
Trajectory Optimization for Cable-Driven Soft
Robot Locomotion

James M. Bern∗, Pol Banzet∗, Roi Poranne∗† and Stelian Coros∗
∗ Department of Computer Science, ETH Zurich, Switzerland
† Department of Computer Science, University of Haifa, Israel

jamesmbern@gmail.com, pol.banzet@protonmail.com, roi.poranne@inf.ethz.ch, scoros@gmail.com

Abstract—Compliance is a defining characteristic of biolog-
ical systems. Understanding how to exploit soft materials as
effectively as living creatures do is consequently a fundamental
challenge that is key to recreating the complex array of motor
skills displayed in nature. As an important step towards this
grand challenge, we propose a model-based trajectory optimiza-
tion method for dynamic, cable-driven soft robot locomotion.
To derive this trajectory optimization formulation, we begin by
modeling soft robots using the Finite Element Method. Through
a numerically robust implicit time integration scheme, forward
dynamics simulations are used to predict the motion of the
robot over arbitrarily long time horizons. Leveraging sensitivity
analysis, we show how to efficiently compute analytic derivatives
that encode the way in which entire motion trajectories change
with respect to parameters that control cable contractions. This
information is then used in a forward shooting method to auto-
matically generate optimal locomotion trajectories starting from
high-level goals such as the target walking speed or direction.
We demonstrate the efficacy of our method by generating and
analyzing locomotion gaits for multiple soft robots. Our results
include both simulation and fabricated prototypes.

I. INTRODUCTION

Soft tissues are an integral component of every biome-
chanical design, and they play a key role in defining the
performance, efficiency and robustness of the movements we
see in the animal kingdom. In the field of Soft Robotics, a
fundamental quest is therefore to understand how to exploit
soft materials as effectively as living creatures do. Over the
past three decades, this quest has led to the development
of robots that are composed almost entirely out of flexible
materials [12, 8, 19, 18].

Elastic and deformable materials endow soft robots with
abilities that are typically out of reach for traditional, piece-
wise rigid robotic systems. For example, they can squeeze
through small spaces [18], they can traverse unstructured
terrains without any perception or feedback loops [8], and
they can even be subjected to extreme perturbations without
sustaining damage [21]. Nevertheless, the mobile capabilities
demonstrated by today’s soft robots fall well behind those of
their traditional counterparts: while the world’s most advanced
rigid robots can walk and run in complex environments, soft
robots are just beginning to crawl. This is because design-
ing and controlling soft robots demands that the designer
understands, anticipates and plans for large structural defor-
mations. Without appropriate modeling and simulation tools,

robot designers must rely on intuition and painstaking manual
experimentation when creating new types of soft robots.

Our long term goal is to develop a mathematical framework
within which to formally frame soft robotic design and motion
control problems. As a first step forward, in this paper we
introduce an efficient trajectory optimization method that is
specifically tailored to cable-driven soft robots. To derive our
trajectory optimization formulation, we begin by modeling
soft systems using the Finite Element Method (FEM) [9, 1].
Through a numerically robust implicit time-stepping scheme,
forward dynamics simulations are used to predict the motion
of the robot over arbitrarily long time horizons. Leveraging
sensitivity analysis, we show how to efficiently compute
analytic derivatives that encode the way in which entire
physically-simulated motion trajectories change with respect
to parameters that control cable contractions. This information
enables the use of a forward shooting method to automatically
generate optimal locomotion trajectories starting from high-
level goals such as the target walking speed or direction.

Prior work in soft robot locomotion makes heavy use of
hand-designed control trajectories [18, 21, 14]. This approach
has been shown to yield impressive results for relatively
simple designs and motion tasks. However, as is the case with
rigid robots, increasing soft robot complexity will necessitate
algorithmic frameworks for motion planning and control. In
simulation, controllers for soft systems have been generated
before using evolutionary approaches [4, 7] or various forms
of model-predictive control [20, 6, 17, 11]. Due to the many
modeling approximations that are typically exploited by such
methods (e.g. unreasonably large number of actuators that
can generate arbitrary deformations) these efforts have been
confined to simulated environments, without a clear path to
applications to real-world soft robots. One notable exception in
the soft robotics literature is the work of [15], which develops
a trajectory optimization formulation for a sufficiently realistic
model of a soft tentacle. We use a very different model (FEM)
in our work, and to the best of our knowledge, ours is the first
model-based trajectory optimization method for dynamic soft
robot locomotion. This specific problem domain also sets our
work apart from other recently proposed, model-based control
methods for soft robots [1, 10, 5].

Succinctly, our contributions are as follows:
• A lightweight, differentiable simulation model for cable-

driven soft robots with contacts.



Figure 1. Our Puppy robot (left) is a cable-driven quadruped cast from flexible foam. In this work we will show how to find optimal locomotion trajectories
for such robots by leveraging a finite element simulation (right).

• An explanation of how to cast soft robot locomotion as
a tractable trajectory optimization problem, including the
calculation of relevant derivatives.

• Two fabricated prototypes including a soft quadruped.

II. SIMULATION MODEL

We model the body of a soft robot using the Finite Element
Method, while the cables used for actuation are modeled as
stiff unilateral springs. Contacts with the ground are approxi-
mated using a differentiable, penalty-based model. We use an
implicit time integration scheme, both because it enables the
use of large time-steps, and also because it robustly handles
the numerically stiff nature of the cables. We now describe
each part of our simulation model in detail.

A. FEM Modeling of Soft Robot Bodies

Our approach to computing the FEM energy is the same
as the approach taken in [1], and we briefly summarize it
here. The body of a soft robot is discretized by a tetrahedral
mesh, with linear elements and a compressible neo-Hookean
material model. In order to model the motor assembly seated
atop the robot, we simply add additional mass to the topmost
nodes (See Figure 1). The specific choice of material model is
not pivotal, so long as the simulation captures the behaviour
of the real material well. While it does not capture e.g. the
viscoelastic behavior of the flexible foam, we find the neo-
Hookean model to be satisfactory for our application.

The positions of all nodes are assembled into a vector x,
which we refer to as the state of the robot. The deformation
energy density of each element using a compressible Neo-
Hookean material model is defined by

Ψ(x) =
µ

2
tr(FTF − I)− µlnJ +

κ

2
(lnJ)2, (1)

where F is the deformation gradient, µ and κ are material
parameters, I is the identity matrix and J = det(F). The total
deformation energy EFEM(x) stored in the mesh is computed
by summing up the energy stored in all elements.

For computational efficiency we choose to work with coarse
finite element meshes. Such meshes experience the phe-
nomenon of numerical stiffening, wherein a coarse mesh acts
more stiffly in simulation than does its dense counterpart [3].

We therefore choose to fit the parameters of the material
model—Young’s modulus and Poisson’s ratio—experimentally
through trial and error, so as to achieve the best possible
visual match between simulation and reality. This enables us
to achieve a more accurate model than if we were to e.g.
look up parameters in a table. While numbers from a table
might be correct in the sense that are the true to the real-world
material, because of numerical stiffening they will not produce
accurate results when applied to a coarse finite element mesh.
A coarse mesh with a good visual parameter fit strikes an
effective balance between speed and accuracy—fast enough
to run trajectory optimization, and accurate enough for the
results of that optimization to carry over to the real world.

B. Cables

Cables are represented by polylines, where each vertex is
bound to the surface of the mesh using barycentric coordinates.
The current length of a cable L(x) can be computed directly
from the nodal positions x, as the total length of the segments
of the polyline. The deformation of a cable is defined by

Γ(α,x) = L(x)− α, (2)

where α is a controllable rest length. A cable with positive
deformation is under tension, while a cable with negative
deformation is slack. We define the total energy stored in a
cable to be

Ecable = Q(Γ(α,x)),

where Q is a smooth one-sided quadratic [1], used to model
a unilateral spring.

At any given time, a certain length of cable is wrapped
around each spool, or bound, and the remainder is off the
spool, or free. A natural kinematic quantity for controlling
our robots is therefore the signed length of cable pulled into,
or let out of, a spool, relative to the initial length of bound
cable. We call this quantity the contracted length, and denote
it by u. Other choices for the control variable are possible,
and we refer the reader to the appendix for one such choice.

We can express the rest length α as a function of u:

α(u) = α0 − u, (3)



where α0 is the assembly length of the cable, defined to be
the amount of free cable present when the robot is assembled
and at rest. Figure 2 illustrates these definitions. We set the
absolute position of the motor θ to zero at assembly, which
gives us the simple conversion u = rθ, where r is the radius
of the spool.

rest pose deformed pose

Figure 2. The assembly length α0 is the length of free cable when the physical
robot is first assembled and at rest. The rest length α is the amount of free
cable when the robot is actuated by u.

C. Contacts

Contacts in deformable objects are notoriously difficult to
model. We approach the problem using a penalty method.
The benefits are twofold: 1) it more appropriately models the
fuzzy interface between the soft robot and the environment
and 2) it keeps our model spatially continuous, which makes
it amenable to continuous trajectory optimization.

Specifically, we require two consecutive states, xk and
xk−1, to model contacts. Each node on the boundary of the
robot is assigned a contact energy, comprised of a normal com-
ponent and a tangential component. The normal component of
the contact energy is Q(−yk), where Q is again the one-sided
quadratic [1], and yk is the y-coordinate of the node’s current
position. This energy increases rapidly as the node begin to
penetrate the floor, and is zero when the node is above the
floor. The tangential component of the contact energy is

µNk−1

(
(xk − xk−1)2 + (zk − zk−1)2

)
where µ is a tunable scalar weight for the roughness of the
surface and Nk−1 is the magnitude of the normal force at the
previous time-step. This energy discourages nodes in contact
with the ground from moving tangentially, emulating friction.
To summarize, the contact energy is:

Econtact = Q(−yk)+µNk−1

(
(xk − xk−1)2 + (zk − zk−1)2

)
D. Time integration

We denote the total energy of our system at time tk as
Ek(xk,uk) where

Ek = EFEM
k + Ecables

k + Econtacts
k + Egravity

k .

This includes the elastic energy stored in the foam and
cables, the contact energies, and gravitational potential energy.
Our goal is to compute the state trajectory x given control
trajectory u. Let xk, uk denote the nodal positions and cable

contractions respectively at time tk. The trajectory is governed
by Newton’s second law

gk = fk −mak = 0. (4)

where fk = −∂Ek

∂xk
is the vector of nodal forces, m is the

mass matrix, and ak = (xk−2xk−1+xk−2

h2 ) is the acceleration
discretized according to implicit Euler with step size h. Given
control uk and the previous two states xk−1,xk−2, we solve
(4) for the new state xk. Specifically we use Newton’s method
to find xk minimizing the functional E + h2

2 a
T
k mak as

described in [16].

III. LOCOMOTION OPTIMIZATION

Given a control trajectory u = (u1, . . . ,uK) we can use the
information in the previous section to compute state trajectory
x = (x1, . . . ,xK) via forward simulation. In this section we
turn to our main goal, which is to find a control trajectory
that makes the robot locomote. We formulate the problem as
a trajectory optimization, where the objective is to match a
target trajectory for the robot’s center of mass. Specifically,
given a desired center of mass trajectory (x̂COM

1 , . . . , x̂COM
K )

our goal is to minimize

O(x(u)) =

K∑
k=1

∥∥∥xCOM
k

(
xk(u)

)
− x̂COM

k

∥∥∥2 , (5)

where xCOM(xk) is the center of mass of xk. In practice we
add a regularizer to our objective to ensure the optimization
is well-posed. We describe this regularizer in the appendix.

Figure 3. A top-down view of the Puppy’s target center of mass trajectory
x̂COM (left) for walking in a straight line, and the corresponding simulated
center of mass trajectory xCOM made with optimal control signals u (right).
In both cases the robot’s body is shown at its starting position in yellow.
Note that the short grey portion at the beginning of the simulated trajectory
corresponds to the preparatory phase of motion, discussed in Section III-B.

In order to minimize (5), we use a direct shooting approach
in combination with sensitivity analysis to compute analytical
derivatives. We now explain the details of our optimization.

A. Sensitivity Analysis

We minimize the objective O(x(u)) using the Gauss-
Newton method. This approach requires the gradient of the
objective dO

du . We expand using the chain rule to obtain

dO
du

=
∂O
∂x

dx

du
.

The term ∂O
∂x is straight-forward to compute, but the term dx

du
requires more work. To map from u to x we must solve (4) K
times in sequence. While it would be possible to differentiate



this procedure directly using automatic differentiation, we in-
stead leverage a powerful technique called sensitivity analysis.
For an introduction to this technique, and a related technique
known as the adjoint method, we refer the reader to [2].

All steps of the trajectory (u,x(u)) must satisfy Equa-
tion (4), and hence all K copies of Equation (4) can be
assembled into the matrix equation

g1
...
gK


︸ ︷︷ ︸

g

=


f1
...
fK


︸ ︷︷ ︸

f

−


m

. . .
m


︸ ︷︷ ︸

M


a1

...
aK


︸ ︷︷ ︸

a

= 0. (6)

This can be written in a more compact form as

g = f −Ma = 0. (7)

Taking the total derivative of g(u,x(u)) = 0 with respect
to the control trajectory u results in

dg

du
=
∂g

∂u
+
∂g

∂x

dx

du
= 0. (8)

Note that ∂a
∂u = 0, which implies ∂g

∂u = ∂f
∂u . Substituting this

into Equation (8) and rearranging we arrive at

∂g

∂x

dx

du
= −∂f

∂u
, (9)

which can be solved for dx
du . While we could do this naively

by solving a single massive linear system, we instead employ
a computationally-efficient option. We observe that the system
has a special block structure as shown in Fig. 4. Indeed, the
partial derivative ∂g

∂x = ∂f
∂x −m

∂a
∂x is block lower triangu-

lar. More specifically,when using implicit Euler integration
scheme, ∂g

∂x has nonzero blocks only along the diagonal and
the two bands below it, for a total of three non-zero bands.

More in-depth, recall that for any equation AX = B where
A,B,X are all matrices, we can solve for each column of
X separately. Therefore, it suffices to know how to solve for
the j-th column of blocks dx

duj
, which relate changes in the

control signal at time tj to changes in the entire state trajectory.
Clearly, uj cannot influence the position of the mesh at any
time before tj , i.e. dxi

duj
= 0 for all j > i. Consequently, the

derivative dx
du is also block lower triangular. Given the choice

of implicit Euler as integrator, multiplying the i-th row of ∂g
∂x

by the j-th column of dx
du yields the equation

∂gi
∂xi

dxi

duj
+

∂gi
∂xi−1

dxi−1

duj
+

∂gi
∂xi−2

dxi−2

duj
= − ∂fi

∂uj
, (10)

which is a recurrence relation for dxi

duj
, and the total derivative

of the i-th physics constraint gi = 0 with respect to the j-
th control uj . This means that dxi

duj
depends on dxi−1

duj
and

dxi−2

duj
. For i = j both of these terms will vanish, since a

control applied at time tj cannot influence the mesh’s shape
at any previous times. For i = j + 1, only the second term
will vanish. We can therefore solve the column dx

duj
by block,

starting at the entry dxj

duj
and working our way down.

We note that the first system we solve is
∂gj
∂xj

dxj

duj
= − ∂fj

∂uj
, (11)

which is none other than the “one step dynamics” relationship
obtained by taking the total derivative of the j-th physics
update rule with respect to the j-th control uj . In the quasi-
static case this reduces to the system solved for quasi-static
sensitivities in [1].

Figure 4. The sparsity structure of the matrices in Equation (9). The key
point is that dg

dx
is block lower triangular.

B. Implementation details

We turn now to the specific details of our implementation.
These details all concern the choice of variables we actually
optimize over. We begin by splitting the control trajectory
u into two phases. We then reparameterize u using splines.
Finally we employ two additional reparameterizations.

1) Control trajectory: We seek a two part control trajectory
u, consisting of a preparatory control trajectory uprep and a
cyclic control trajectory ucycle. The preparatory phase takes
the robot from its rest state to the beginning of its walk cycle,
where the cyclic control trajectory can be repeatedly run to
make the robot locomote. For an example of these two parts
in practice see Figure 5.

When optimizing, we use the control trajectory

u = (uprep,ucycle,ucycle), (12)

consisting of the intro phase followed by two copies of the
cyclic control trajectory. Initially we included just a single
copy of the cyclic control trajectory, but this led to overly-
aggressive policies such as the robot diving forward and losing
its balance completely. Such pathological policies make sense
according to our objective, as diving forward is in fact moving
the center of mass closer to its target. However after diving
forward, the robot can make no further progress, and so this
strategy is not a desirable locomotion strategy according to our
intuition. What we really want is a cyclic control trajectory that
both 1) moves the robot forward, and 2) finishes with the robot
ready to begin another cycle. We accomplish this by including
an additional copy of cyclic control trajectory in our overall
control trajectory. We note that one could certainly include
additional copies, though this would come at a significant
computational cost. In all of our examples we found two copies
to be sufficient.



Figure 5. We optimize for a control trajectory composed of a preparatory trajectory followed by two copies of a cyclic trajectory. Each colored trace is the
actuation signal for one tendon pair. Note how in the preparatory phase, the Puppy raises its hind leg in preparation for the cyclic phase.

2) Splines: In order to ensure smooth control trajectories,
as well as to reduce the dimensionality of the search space,
we reparameterize the control trajectory of each tendon with a
zero-tangent cubic Hermite spline. We space the control points
equally along the time axis, and and assemble the u-values of
all control points into the reduced optimization vector z. The
family of curves spanned by our choice of reparameterization
is quite simple, but we have found it to be sufficient to generate
walking motions. The choice of zero tangents is particularly
convenient, as it means that in order to enforce bounds on
u = u(z) we can simply enforce the same bounds on z.

One side effect of using splines is that our final trajectory
will likely contain unnecessary slack. Depending on the hard-
ware implementation, this can cause problems such as cables
slipping off of their spools. We remedy this with a simple
post-processing step. For an optimal control trajectory u and
a corresponding trajectory of deformations Γ(u,x(u)), the
trajectory of slack s is found by clamping Γ to (−∞, 0]
and then taking the absolute value. The zero-slack control
trajectory upost = u+ s is functionally equivalent to u, and
can be used instead.

3) Tendon pairs and bilateral symmetry: In all of our
robot designs, each motor drives a pair of tendons. This is
a conscious design choice to avoid twisting of the legs. In
order to incorporate such tendon pairs into our optimization
framework, we use an additional reparameterization, wherein
each tendon in a given pair shares the same control signal.

We employ one final reparameterization in order to obtain
symmetric motions. Examples with bilateral symmetry—such
as the Puppy—have the property that each tendon pair has a
mirrored pair on the other side of the robot. Our reparame-
terization has that a given tendon pair’s trajectory is the same
as that of its mirrored pair offset by half a period.

IV. RESULTS

We used our system to design locomotion trajectories for
two soft robot examples, and built physical prototypes of
each. Video-capture data for determining our robots’ speeds
is shown in Figure 6 and summarized in Table I. We refer the
reader to our supplementary video for footage of our examples
walking.

Each of our robots consists of a continuum soft foam body,
with a rigid motor assembly seated on top. Each motor assem-

Table I
ROBOT SPEEDS

Speed in simulation Speed in reality
[body lengths per minute] [body lengths per minute]

Tripod 6.1 7.4
Puppy 8.6 7.2

Figure 6. Quantitative comparison of the Puppy’s trajectory for the straight
line motion seen from a top-view in simulation (left) and in reality (right).
We are tracking a feature point on the center of the Puppy’s back.

bly consists of Pololu 298:1 Micro Metal Gearmotors with 3D-
printed spools and a rigid 3D-printed clip-on platform. Power
supply and RoboClaw 2x7A Motor Controllers are off-board.
The robot’s body is cast from FlexFoam-iT!TMIII expanded
polyurethane foam from Smooth-On Inc. We refer the reader
to [13] for a more in-depth discussion of foam casting as it
applies to soft robots. We employ 3D-printed eyelets to couple
braided fishing line cables to the robot’s foam body. We make
use of flexible Bowden tubes to cleanly route the cables from
the motors through the robot’s body to the legs. The eyelets
are shallowly-inserted into the foam, and have a very small
footprint in the direction of deformation. The motor assembly
sits atop of the robot, and while it does contribute additional
weight, it has little impact on the robot’s deformation behavior.
Aside from the eyelets, Bowden tubes, and motor assembly,
the robot is completely soft.

To integrate physics forward in time, we use constant time-
step h = 0.033 s. Our trajectories have 24 time-steps in the



preparatory phase, and 72 time-steps in the cyclic phase. Since
we include two copies of the cyclic phase, this means our
control and state trajectories are 168 steps, or 5.6 seconds long.
The splines we use to reparameterize the control trajectory u
have four equally-spaced keyframes. Since the Puppy example
has 8 actuators, this means the reduced optimization vector
z is of size 32 or 16 depending on whether or not we use
the bilateral symmetry reparameterization as well. A single
iteration of the Gauss-Newton method (including line search)
run on the Puppy example takes around 2 minutes on a desktop
PC. Our optimizations converge quickly, typically finding an
acceptable locomotion trajectory in under ten iterations.

A. Tripod

As a first fabricated example of our pipeline, we present
a tripod robot. The Tripod is 14 cm long. The Tripod’s body
weighs 24 g, and its motor assembly weighs 44 g. The outer
two legs are unactuated and provide stability. The inner leg is
controlled by two motors, one of which bends it to the left, and
the other of which bends it to the right. When cocontracted, the
motors compress the center leg so that it no longer contacts the
ground, as shown in Figure 7. The Tripod is a quite a simple
robot, and as such is a good first test case for those interested
in implementing a similar system. Despite its simplicity it
locomotes quite quickly.

Figure 7. The Tripod is a simple foam robot with two actuators that moves
by contracting its central leg.

B. Puppy

We also fabricate a soft quadrupedal puppy. Each of the
Puppy’s four legs are controlled by two motors, for a total of
eight actuator degrees of freedom. The general cable layout
of each leg is the same as for the middle leg of the tripod.
The Puppy is 13 cm long. The Puppy’s body weighs 90 g,
and its motor assembly weighs 140 g. This makes the puppy
top-heavy and unstable. The Puppy serves as a more complex
example, leveraging our framework to show a variety of gaits
in addition to walking on flat ground in a straight line.

we begin by finding a control strategy for straight locomo-
tion on flat ground, with bilateral symmetry turned on. We
perform two further optimizations for the Puppy. First, we
optimize for the Puppy to walk up an incline. An inclined
ground plane is physically equivalent to a flat ground plane
with the direction of gravity rotated. We make this simple
modification to our simulator, and then reoptimize for a walk-
ing trajectory. Our optimization successfully finds a policy
that walks up the hill in simulation. We note that the policy
that was optimized for flat ground actually causes the Puppy
to fall over on this incline. This comparison can be seen in

our supplementary video. Second, we optimize for the puppy
to turn, by specifying a target trajectory that turns to the
right (simply a quarter circle, instead of the straight line used
before). For the turning optimization, we turn off the bilateral
symmetry reparameterization. We do this because a gait that
turns the robot must be asymmetric. Warm-started with the
control trajectory flat ground motion, our optimization readily
finds the turning motion shown in our supplementary video.
Making use of one straight leg as a pivot the Puppy is able to
turn, even though its cables induce deformations only in the
sagittal plane.

V. DISCUSSION AND FUTURE WORK

A. Reparameterizations

Our optimization method makes use of multiple repa-
rameterizations. The use of splines results in smooth, low-
acceleration trajectories, and massively reduces the dimension-
ality of the search space. Bilateral symmetry is also enforced
by means of reparameterization, which further reduces the
search space.

However, all this reparameterization is not for free. We have
no guarantee that our particular slice of the overall search
space contains a trajectory that meets our goals. Potentially-
superior non-spline or asymmetric trajectories cannot be found
when we are using the corresponding reparameterizations.
However, if we know we are looking for such trajectory—
as is the case for making the Puppy turn—we can simply
turn the relevant reparameterization off. We can even warm
start the optimization for an asymmetric trajectory with a
related optimal symmetric trajectory (e.g. warm starting the
optimization for turning with the result of the optimization
for straight line walking, as we did for the Puppy). Future
work should be done to find further effective ways to explore
the overall search space.

B. Simulation shortcomings

While quite lightweight, our model is still largely sufficient
for our control purposes. However, we do note some mis-
matches between simulation and reality. We highlight relevant
areas for improvement in our model here.

One region for improvement is at the interface between our
robots and the ground. Locomotion behavior is very much a
function of surface. Our model is precise enough to capture
a robot walking on a smooth homogeneous table, but the real
world is rarely quite so well behaved. Our simple penalty-
based model of frictious contacts is a reasonable first step, but
future work is needed to model and successfully traverse the
varied and complex surfaces we see in the wild.

A second area for improvement is how we model the mass
contribution of the motor assemblies. We opt for the simple
strategy of simply adding additional mass to the topmost nodes
of our finite element mesh. This approach is reasonable enough
for walking on flat ground. However on a slope this strategy
predicts different moments about the feet than what we get
in reality, with the net result being that the simulated robot is
more stable than its real-world counterpart. Future work could



incorporate the motor assemblies as rigid bodies, though we
note this will complicate the simulation.

C. Towards more complex robots

The physical prototypes in this work are meant to demon-
strate the use of the overall system, and were chosen for their
simplicity. They have single-piece foam bodies, simple overall
geometries, and likely the simplest feet imaginable. Multiple
exciting avenues of future work are possible when it comes to
pushing the complexity of the robots we can control.

We can start by thinking about fabricating our robots from
non-homogeneous materials. This opens the door to perhaps
co-optimizing for spatially-varying material parameters. We
can also draw some inspiration from nature. Animals have
claws and other features on their feet that play a large role in
their ability to move on varied surfaces. We can explore how
to employ similar strategies to improve the controllability soft
robots. Controlling this new generation geometrically-complex
soft robots will likely require high fidelity models.

VI. CONCLUSION

The research community’s interest in soft robotic locomo-
tion dates back decades [19]. Nevertheless, soft robots remain
very difficult to design and build, and very challenging to
control. In this paper we presented a trajectory optimization
method for automatically designing soft robot locomotion
strategies that carry over to the real world. Prototyping in our
simulator is far less time consuming than prototyping in the
real world, and the trajectory optimization we propose may
find approaches to locomotion that a human designer would
not. Our hope is that work like this will empower researchers
and enthusiasts alike to explore bold new designs and control
strategies for soft robot locomotion, and fulfill the dream of
exploiting soft materials as effectively as the members of the
animal kingdom.

APPENDIX

A. Controlling tension directly

In this work we chose our control variable to be contracted
length u. Other choices are possible, and a particularly elegant
one is to prescribe tension τ . This yields a method that is
agnostic with respect to cable energy model, and to model
bilateral cables we simply constrain τ ≥ 0. The cable energy
contribution written as a function of tension τ is simply

Ecable(x, τ) = L(x)τ.

However, in order to map back from tension to a real-world
quantity (like contracted length) it is necessary to reintroduce
an energy model. To play motions back in the real-world, or
to e.g. impose bounds on u, then directly controlling tension
may not actually be such a convenient choice.

B. Slack-eating regularizer

A cable under any amount of slack (equivalently a cable
with Γ ≤ 0) holds zero energy. This introduces a flat region
into our optimization landscape, where small changes to the
contracted length make zero change to the robot’s state. We
solve this problem by adding a regularizer that eats slack. The
specific regularizer we add is

Q(ε− Γ(x(u),u)), (13)

where Q is the smooth one-sided quadratic [1], and ε a small
positive constant. This function contributes positive cost for
Γ < ε, and drives the system towards a state where all cables
are at least slightly taught.

REFERENCES

[1] James M Bern, Grace Kumagai, and Stelian Coros.
Fabrication, modeling, and control of plush robots. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3739–3746. IEEE, 2017.

[2] Andrew M Bradley. Pde-constrained optimization and
the adjoint method. 2010.

[3] Desai Chen, David I. W. Levin, Wojciech Matusik,
and Danny M. Kaufman. Dynamics-aware numerical
coarsening for fabrication design. ACM Transactions on
Graphics (TOG), 36(4):84:1–84:15, July 2017.

[4] Nick Cheney, Josh Bongard, and Hod Lipson. Evolving
soft robots in tight spaces. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO),
pages 935–942, 2015.

[5] Eulalie Coevoet, Adrien Escande, and Christian Duriez.
Optimization-based inverse model of soft robots with
contact handling. IEEE Robotics and Automation Letters
(RA-L), 2(3):1413–1419, 2017.

[6] Stelian Coros, Sebastian Martin, Bernhard
Thomaszewski, Christian Schumacher, Robert Sumner,
and Markus Gross. Deformable objects alive! ACM
Transactions on Graphics (TOG), 31(4):69, 2012.

[7] Francesco Corucci, Nick Cheney, Francesco Giorgio-
Serchi, Josh Bongard, and Cecilia Laschi. Evolving soft
locomotion in aquatic and terrestrial environments: ef-
fects of material properties and environmental transitions.
Soft Robotics (SoRo), 5(4):475–495, 2018.

[8] Dylan Drotman, Saurabh Jadhav, Mahmood Karimi,
Philip deZonia, and Michael T. Tolley. 3d printed
soft actuators for a legged robot capable of navigating
unstructured terrain. In IEEE International Conference
on Robotics and Automation (ICRA), pages 5532–5538,
2017.

[9] Christian Duriez. Control of elastic soft robots based on
real-time finite element method. In IEEE International
Conference on Robotics and Automation (ICRA), pages
3982–3987. IEEE, 2013.

[10] Fanny Ficuciello, A. Migliozzi, Eulalie Coevoet, A. Petit,
and Christian Duriez. Fem-based deformation control for
dexterous manipulation of 3d soft objects. In IEEE/RSJ



International Conference on Intelligent Robots and Sys-
tems (IROS), pages 4007–4013, 2018.

[11] Yuanming Hu, Jiancheng Liu, Andrew Spielberg,
Joshua B Tenenbaum, William T Freeman, Jiajun Wu,
Daniela Rus, and Wojciech Matusik. Chainqueen: A real-
time differentiable physical simulator for soft robotics.
arXiv preprint arXiv:1810.01054, 2018.

[12] Xiaonan Huang, Kitty Kumar, Mohammad K. Jawed,
Amir M. Nasab, Zisheng Ye, Wanliang Shan, and Carmel
Majidi. Chasing biomimetic locomotion speeds: Creating
untethered soft robots with shape memory alloy actua-
tors. Science Robotics, 3(25), 2018.

[13] Nitish Kumar Stelian Coros Luca Somm, David Hahn.
Expanding foam as the material for fabrication, prototyp-
ing and experimental assessment of low cost soft robots
with embedded sensing. IEEE Robotics and Automation
Letters (RA-L), 4(2):761–768, 2019.

[14] Shixin Mao, Erbao Dong, Hu Jin, Min Xu, and KH Low.
Locomotion and gait analysis of multi-limb soft robots
driven by smart actuators. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 2438–2443, 2016.

[15] Andrew D Marchese, Russ Tedrake, and Daniela Rus.
Dynamics and trajectory optimization for a soft spatial
fluidic elastomer manipulator. The International Journal
of Robotics Research (IJRR), 35(8):1000–1019, 2016.

[16] Sebastian Martin, Bernhard Thomaszewski, Eitan Grin-
spun, and Markus H. Gross. Example-based elastic
materials. ACM Transactions on Graphics (TOG), 30
(4):72:1–72:8, 2011.

[17] Zherong Pan and Dinesh Manocha. Active animations
of reduced deformable models with environment interac-
tions. ACM Transactions on Graphics (TOG), 37(3):36,
2018.

[18] Robert F Shepherd, Filip Ilievski, Wonjae Choi,
Stephen A Morin, Adam A Stokes, Aaron D Mazzeo, Xin
Chen, Michael Wang, and George M Whitesides. Multi-
gait soft robot. Proceedings of the national academy of
sciences (PNAS), 108(51):20400–20403, 2011.

[19] Koichi Suzumori, Shoichi Iikura, and Hirohisa Tanaka.
Development of flexible microactuator and its applica-
tions to robotic mechanisms. In IEEE International
Conference on Robotics and Automation (ICRA), pages
1622–1627, 1991.

[20] Jie Tan, Greg Turk, and C Karen Liu. Soft body
locomotion. ACM Transactions on Graphics (TOG), 31
(4):26, 2012.

[21] Michael T Tolley, Robert F Shepherd, Bobak Mosadegh,
Kevin C Galloway, Michael Wehner, Michael Karpelson,
Robert J Wood, and George M Whitesides. A resilient,
untethered soft robot. Soft robotics (SoRo), 1(3):213–223,
2014.


	Introduction
	Simulation Model
	FEM Modeling of Soft Robot Bodies
	Cables
	Contacts
	Time integration

	Locomotion optimization
	Sensitivity Analysis
	Implementation details
	Control trajectory
	Splines
	Tendon pairs and bilateral symmetry


	Results
	Tripod
	Puppy

	Discussion and Future Work
	Reparameterizations
	Simulation shortcomings
	Towards more complex robots

	Conclusion
	Appendix
	Controlling tension directly
	Slack-eating regularizer


