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Abstract— In this paper, we address the challenge of robotic
manipulation of elastically deforming objects. To this end, we
model elastic objects using the Finite Element Method. Through
a quasi-static assumption, we leverage sensitivity analysis to
mathematically model how changes in the robot’s configuration
affect the deformed shape of the object being manipulated. This
enables an interactive, simulation-based control methodology,
wherein user-specified deformations for the elastic objects are
automatically mapped to joint angle commands. The optimiza-
tion formulation we introduce is general, operates directly
within a robot’s workspace and can readily incorporate joint
limits as well as collision avoidance between the links. We
validate our control methodology on a YuMi R© IRB 14000,
which we use to manipulate a variety of elastic objects.

I. INTRODUCTION

Deformable objects such as cables, textiles, elastic metal
rods, plush toys, cushions and paper are ubiquitous on con-
struction sites, in factories, hospitals and in our own homes.
Robotic manipulation of such physical objects therefore
holds tremendous promise for many applications. However,
deformable objects have infinite-dimensional configuration
spaces, which makes them unsuitable for established motion
planning and control techniques developed under the assump-
tion that objects are rigid. As a consequence, solutions that
allow robots to effectively manipulate and work with such
flexible objects remain largely out-of-reach. In this paper
we propose an efficient method for robotic manipulation of
elastically-deforming objects. Our goal is to provide a system
that is computationally efficient such that user-provided high-
level task specifications can be translated into appropriate
robot commands almost instantaneously.

The task of robotic manipulation of deformable objects
has a long history. Shape control of deformable objects was
explored early on by Kosuge et al., who leverage a finite
element model to relate the bend angle of a piece of sheet
metal to the placement of a robot’s grippers [1]. The overall
task of soft body manipulation was also explored early on
from the standpoint of path planning, with Lamiraux et al.
finding paths for abstract robot end effectors to guide an
elastic object around obstacles, while respecting that object’s
physical model [2].

A large amount of work has been done on the specific
problem of manipulating deformable linear objects (DLOs),
for example in the context of knot tying [3]. The work on
DLO manipulation includes approaches based on numerical
simulation [4], as well as analytic methods [5]. In this work
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we will use numerical simulation to tackle the more gen-
eral problem of manipulating arbitrarily-shaped, elastically-
deforming objects based on high-level user-provided speci-
fications.

The use of physical simulation to guide the manipulation
of non-rigid objects is starting to be explored for a vari-
ety of problems. We refer the reader to [6] for a survey.
Recent works demonstrate the predictive power of numer-
ical simulations, accomplishing tasks such as mechanical
assembly with a deformable ring [7], folding of clothes [8],
and liquid pouring [9]. However, the computational cost of
most existing approaches typically requires at least parts of
the optimization process to be run offline [7], [8], [9], or
necessitates the use of heuristics [9]. To avoid the compu-
tational burden, other works on elastic object manipulation
avoid high-fidelity models altogether. For instance [10] uses
computer vision to estimate simple linear models on the fly.
Learning and demonstration-based approaches show promise
in the context of this challenging problem domain as well
[11], [12], but they can often still benefit from accurate
simulation models [13].

In this paper, we develop a new, computationally-efficient
formulation that leverages finite element simulation and sen-
sitivity analysis to endow robots with the knowledge required
to manipulate complex, elastically-deforming objects. The
only assumption made by our model is that the motion of
the elastically-deforming objects being manipulated is quasi-
static. Our mathematical formulation differs from recent
related work (e.g. [7], [8], [9]) in two main respects. First by
applying sensitivity analysis in a similar fashion to [14], we
are able to dramatically speed up the generation of control
signals without compromising the predictive power of the
underlying simulation models. This yields an approach that
can be run in real-time as an interactive control method
for practical problem sizes. Second, the variables of our
optimization are joint angles as opposed to end effector
positions. This fact has two benefits: First it makes it simple
to incorporate objectives and constraints related to the robot’s
configuration, e.g. joint limits or collision avoidance. Second,
it operates directly within the configuration space of the
robots. This eliminates the need for workspace approxima-
tions and subsequent projection steps, which could cause
deterioration of results or even failure.

Succinctly, our contributions are:
• A general, computationally-efficient method for inter-

actively controlling the shape of elastic objects with a
general-purpose robot.

• Multiple demonstrations of elastic objects being dexter-
ously manipulated by a YuMi R© IRB 14000.



We present our physical simulation model in Section II,
our control framework in Section III, describe the interac-
tion modalities available in our graphical user interface in
Section IV, and present our results in Section V.

II. SIMULATION MODEL

In this section we derive a computationally efficient con-
trol model for the manipulation of elastic objects using
typical robots. To this end, we couple a simple link and joint
representation of the robot to a finite element model (FEM)
of an elastic object.

The configuration of a fully-actuated robot with m inde-
pendently controlled joints is defined by joint angles θ ∈
Rm. The shape of a finite element mesh with n nodes can
be written as a vector x = [pT1 , ...p

T
n]T, where pi ∈ R3 is

the position of the i-th node. We often refer to x as the pose
of the mesh.

We assume the overall system is quasi-static. Given robot
joint angles θ, our model computes a corresponding statically
stable pose x̂(θ) of the elastic object. This is done by using
Newton’s method to minimize the total energy of the system
E = E(x;θ) over the space of nodal positions.

x̂(θ) = arg min
x

E(x;θ) (1)

The first order condition for a minimum has that
∂E
∂x (x̂(θ);θ) = 0. Recall that the nodal forces F =
[fT

1 , ...,f
T
n ]T are given by F = −∂E

∂x , where fi ∈ R3

is the force acting on the i-th node. Therefore we know
that a solution of Equation (1) also satisfies the equation
F (x̂(θ);θ) = 0. So x̂(θ) adheres the typical definition of
static equilibrium, i.e. that all forces are zero.

The total energy of the system is defined as the sum of
the FEM deformation energy EFEM(x) and a term Egrip(x;θ)
that we call the grip energy. The FEM deformation energy
models the energy that is stored when the elastic material is
deformed in order to achieve a certain objective. The grip
energy models the physical connection between the grippers
of the robot and the contact region on the elastic object.

A. The FEM energy

Our approach to computing the FEM energy is the same as
in [14], and we summarize it here. We model the elastic ob-
ject as a tetrahedral finite element mesh, composed of linear
finite elements with a compressible neo-Hookean material
model, to strike a balance between simulation accuracy and
computational cost. We note that our modeling approach is
agnostic to the specific material model used, so long as the
material model has well defined second derivatives.

We denote the rest pose of the finite element mesh as
X , while x is the current pose. The deformation energy
density of each element is defined using a compressible Neo-
Hookean material model,

Ψ(x,X) =
µ

2
tr(FTF − I)− µlnJ +

κ

2
(lnJ)2, (2)

where F is the deformation gradient, µ and κ are material
parameters, I is the identity matrix and J = det(F).

Our assumption of linear finite elements means that the
deformation gradient is constant across each element. This
in turn implies that the energy density is constant across
each element as well. Therefore the energy stored in a given
element is simply its energy density multiplied by its volume.
The total deformation energy Ed(x) stored in the mesh is
computed by summing up the energy stored in all elements.

In addition to the deformation energy, we also account for
the gravitational potential energy, which is given by

Eg(x) = mTgh, (3)

where m is a vector containing the mass associated with
each node, g is the gravitational constant, and h = h(x) is
a vector containing the height of each node. The total FEM
energy is then

EFEM(x) = Ed(x) + Eg(x). (4)

B. The grip energy

In order to express the notion of a typical robot gripping
an elastic object, we formulate an energy that relates the
position and orientation of the end effectors to the positions
of gripped nodes in the elastic object simulation mesh. The
specific robot we will use in this work is a YuMi R© IRB
14000, which consists of a pair of independently controlled
articulated robotic arms, but we note that our method is
general to any robot with defined joint angles.

With θ being the vector of the robot’s joint angles, the
position and orientation of each end effector e is given by
the forward-kinematics function Te(θ) ∈ SE(3). Initially,
the overall system (i.e. the robot and the elastic object it is
gripping) is in a known reference configuration, with θ0 and
x0, or p0i respectively. Each end effector e is assumed to be
gripping a predetermined region on the surface of the object,
which corresponds to a subset of gripped nodes Ge in the
finite element mesh. We wish to force the positions of these
gripped nodes to match the positions of the end effectors
predicted by the forward kinematics. This can be expressed
by the following grip energy

Egrip(x;θ) =
1

2
K
∑
e

∑
pi∈Ge

∥∥∥pi − Te(θ)[p0i ]
∥∥∥2 , (5)

which corresponds to a spring energy with stiffness K,
where we choose K sufficiently large to approximate a rigid
coupling of the nodes.

III. CONTROL FORMULATION

We leverage the model derived in the previous section
to enable interactive shape control of an elastic object. We
propose a modular optimization framework for shape con-
trol, which easily incorporates additional goals for collision
avoidance and joint limits.

During a control session with our system, the user in-
teractively specifies a target shape x′ = [p′1

T
, ...p′n

T
]T,

where p′i ∈ R3 is the target position of the i-th node.
This target shape is incorporated into the control objective
O = O(x,θ;x′). This objective encodes the goal for the



Fig. 1. The real-world YuMi R© IRB 14000 gripping an elastic object
with custom 3D-printed grippers (left). The corresponding simulated robot
(rendered with standard grippers) and finite element mesh, with gripped
nodes highlighted in red (right).

Fig. 2. An overview of our system. We simulate the real-world robot and
the elastic object it is manipulating. The user poses the simulated elastic
object in the space of robot-achievable shapes. Optimal joint angles are sent
to the real-world robot in real time.

shape of the elastic object x to approximate the target shape
x′, as well as any additional goals written in terms of x,θ
and x′.

Recall that our system is assumed to be quasi-static. A
choice of joint angles θ implies a corresponding statically
stable pose x̂(θ). To score the overall statically stable system
implied by θ, we define a reduced form of the control
objective Ô(θ;x′) = O(x̂(θ),θ;x′), which evaluates the
original objective at x̂(θ). We use a quasi-Newton method
to minimize this reduced control objective over the space of
joint angles.

θ∗(x′) = arg min
θ

Ô(θ;x′) (6)

This yields optimal robot joint angles θ∗(x′), which deform
the elastic object such that it approximates the user-specified
target shape.

The specific control objective we use in this work is
defined as the sum of the shape objective Oshape(x;x′),
the collision avoidance objective Ocollisions(θ), and the joint
limits objective Ojoints(θ). The shape objective measures

how close the mesh is to the target shape. The collision
avoidance objective prevents the robot from colliding with
itself. Finally, the joint limits objective enforces bounds on
robot joint angles.

A. The shape objective

We encode the goal that the mesh pose x match the target
shape x′ into the shape objective

Oshape(x;x′) =
1

2

∑
pi∈S

∥∥pi − p′i∥∥2 , (7)

where S is the subset of mesh nodes for which the user
chooses to specify a target position.

Sensitivity Analysis: Performing the optimization spec-
ified in Equation (6) requires the gradient dÔshape

dθ , where
Ôshape(θ;x′) = Oshape(x̂(θ);x′) is the reduced form of
the shape objective. This gradient is prohibitively expensive
to estimate numerically. This is because Ôshape is defined
in terms of the statically stable pose x̂(θ), which requires
performing the nonlinear optimization in Equation (1) to
evaluate. Motivated by this fact, we derive an analytic
expression for the gradient.

We apply the chain rule to yield

dÔshape

dθ
=
∂Oshape

∂x

dx̂

dθ
, (8)

and employ sensitivity analysis to solve for the Jacobian
dx̂
dθ , which describes how changes in the robot’s joint angles
affect the corresponding statically shape of the elastic object.
Recall from Section II that F̂ (θ) = 0, where F̂ (θ) =
F (x̂(θ);θ). These are the forces on the elastic object after
being deformed into statically stable shape x̂(θ) by a robot
with joint angles θ. They are always zero. Since F̂ (θ) is
always zero, the total derivative of F̂ with respect to θ will
be zero as well, giving us the expression

dF̂

dθ
=
∂F

∂θ
+
∂F

∂x

dx̂

dθ
= 0. (9)

This linear system can be solved for the Jacobian of interest
dx̂
dθ , provided we have a means of computing the two other
Jacobians in the equation. The first Jacobian ∂F

∂x = −∂2E
∂x2

is the negative Hessian of the energy E, which we already
compute to solve statics. To compute the remaining Jacobian
∂F
∂θ , we first recognize that Egrip is the only energy term
that depends explicitly on the joint angles θ, and so ∂F

∂θ =

− ∂
∂θ

∂Egrip

∂x . We substitute into the definition of the grip energy
in Equation (5) and take the required partial derivatives. This
yields the expression

∂F

∂θ
=


∂f1
∂θ
...

∂fn
∂θ

, with
∂fi
∂θ

=
∑
e

{
K ∂Te

∂θ (θ)[p0i ] if pi∈Ge

0 otherwise,

(10)
where ∂Te

∂θ (θ)[pi] is a typical Jacobian used in manipulation
describing how changes in the joint angles θ affect the
position of a point on end effector e.



B. Collision Avoidance

It is imperative that the optimal joint angles returned
by our approach imply a collision-free configuration of the
robot. Collisions would either be between the two arms of
the robot, or between two links of the same arm. We begin
with a 3D model of the YuMi R© IRB 14000, with individual
surface meshes for each link. We then approximate each of
these links with collision spheres (see Figure 3). Then, for

Fig. 3. The simulated YuMi R© IRB 14000 with each rigid link in a different
color (top). The corresponding collision spheres used in our optimization
framework (bottom).

each pair of spheres in non-consecutive links, we add the
following constraint to our optimization∣∣si − sj∣∣ ≥ ri + rj , (11)

where si, sj are the center positions of the spheres, and ri, rj
are the radii.

We treat these constraints as soft so that they can be
incorporated into our overall unconstrained optimization for
θ∗. For each collision constraint we add a barrier function to
Ocollisions. This is a function that vanishes when the constraint
holds, and rapidly increases as the constraint is violated.
Our particular choice of barrier function is the C2 one-sided
quadratic explained in [14].

C. Joint Limits

Since we are optimizing over joint angles, as opposed to
e.g. end effector positions, it is simple to incorporate joint
limits into our approach. Joint limits are constraints of the
form

¯
θ ≤ θ ≤ θ̄, (12)

where
¯
θ is the lower limit on joint angle θ, and θ̄ is the

upper limit. We replace each such pair of joint limits with
two barrier functions, one penalizing θ <

¯
θ and the other

penalizing θ > θ̄.

IV. GRAPHICAL USER INTERFACE

The user can prescribe target shapes for the elastic object
in real-time through a simple graphical user interface. The
primary interaction modality is to specify target positions for
nodes in the mesh using the mouse, as shown in Figure 4.

For the special case of elastic deformable linear objects
(DLOs) our system has an additional input modality, in
which the user sketches a target center-line for the entire
DLO (Figure 5).

Fig. 4. The user specifies target positions for several nodes in the simulation
mesh of the frame, rendered as the orange arrows (left). The result of our
optimization with those target positions (right).
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Fig. 5. The user specifies a target center-line for the simulation mesh of an
initially-straight 320mm foam bar, rendered as the orange curve (top-left).
The result of running our optimization with that target center-line (top-right).
A plot showing the convergence of this example over time (bottom). The
error is the simulated average euclidean distance of nodes subject to a shape
objective from their target position.

V. RESULTS

We outfit a YuMi R© IRB 14000 with custom 3D-printed
fingers for gripping soft objects. A posing session begins
with the robot gripping the elastic object in a reference



configuration (e.g. top-left sub-figure of Figure 5). The
simulation model described in Section II is initialized in the
same configuration, and the gripped nodes are set to match
the region of the surface gripped by the real-world robot.

The user is then free to interactively specify targets using
the simple drag and drop GUI described in Section IV.
The optimization from Section III is run continuously, and
the current best joint angles are sent to the real-world
YuMi R© IRB 14000 in real-time (Figure 2). In Figure 6 we
illustrate that the optimal joint angles found by our control
methodology carry over well from simulation to the real-
world. More results can be seen in Figure 9. We refer the
reader to our video for footage of actual posing sessions,
which further show how the real-world robot and elastic
object track their simulated counterparts.

Fig. 6. Optimized joint angles running on the simulated robot and finite
element mesh (left). The same joint angles running on the real-world robot.

A. Performance
The performance boost gained by employing the sensitiv-

ity analysis to compute the Jacobian ∂x
∂θ is considerable. For

the bar mesh from Figure 5, which contains 1472 elements,
we observe a 8.2x speedup compared to estimating the
Jacobian using a finite-difference approach.

We provide quantitative data on the convergence properties
of our method in Figures 5 and 7. In Figure 5 we show the
typical convergence behavior for our method, going from
the reference configuration to the optimized configuration.
Our method quickly makes progress, and reaches an optimal
set of joint angles in under two seconds. This enables real-
time interaction with the system. The computational times
reported were obtained on an Intel R© Xeon R© CPU E3-1505M
v6 running at 3.6GHz.

In Figure 7 we show a similar plot for a full interaction
session. Over the course of 20 seconds the user is able to
explore multiple different target poses for the elastic object,
and corresponding optimized robot configurations.
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Fig. 7. A plot showing the error over the course of a typical 20 second
control session, wherein a user is controlling the shape of an initially-
straight 320mm foam bar. The optimization is run continuously. During the
times indicated by red shading, the user is actively specifying target nodal
positions. Following the specification of a target position the optimization
converges to an optimal set of joint angles in approximately one second.
The error is the simulated average euclidean distance of nodes subject to a
shape objective from their target position.

VI. DISCUSSION

A. Abstractions for Shape Control

In this work the user is responsible for directly specifying
target shapes for the finite element mesh. This is done either
by specifying target positions for individual nodes, or for
the special case of deformable linear objects by specifying
a target center-line. One avenue of future work would be
to extend the notion of specifying a target center-line to
the case of nonlinear elastic objects, perhaps by leveraging
the rich body of work on curve-skeletons [15]. Another
avenue of future work would be to investigate higher-level
manipulation goals, e.g. to command the robot to fold up
a sheet without having to explicitly specify a sequence of
target shapes.



B. Limitations

Our approach is naturally limited by the capabilities of
its finite element model. We do not currently consider self-
collision of the deformable object, and also cannot guarantee
that buckling will behave exactly as predicted. Indeed, for
some configurations of the end effectors, multiple energy-
minimal poses of the objects can exists (see Figure 8), and
the one that manifests in the real world depends on the his-
tory of the deformation—along the dynamics of the system—
neither of which we account for. Additionally, we do not
consider regrasps, and assume that the gripper positions are
specified from the beginning by the user. In the future, we
could add visual feedback into our system, which would
enable the ability to make corrections to the simulation in
real-time.

Simulation Desired pose Alternative pose

Fig. 8. In certain situations there could be multiple possible poses for the
same end effector configuration. Our model is not guaranteed to predict the
correct one. In this figure our model (left column) predicted the outcome
on the middle column. However, The alternative pose on the right column
also exist.

VII. CONCLUSION

We presented a method for shape control of an elastic
object with a standard robot. We began by deriving a physical
simulation model, which coupled a general finite element
model of the elastic object to the grippers of the robot. Our
control methodology leveraged sensitivity analysis to speed
up computation of the Jacobian relating changes in robot
joint angles to changes in the shape of the elastic object. We
demonstrated the use of our method by controlling the shape
of various elastic objects with a YuMi R© IRB 14000.
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