
Feature Matching with Bounded Distortion
Yaron Lipman1, Stav Yagev1, Roi Poranne1, David W. Jacobs2 and Ronen Basri1
1 Weizmann Institute of Science
2 University of Maryland

We consider the problem of finding a geometrically consistent set of point
matches between two images. We assume that local descriptors have pro-
vided a set of candidate matches, which may include many outliers. We
then seek the largest subset of these correspondences that can be aligned
perfectly using a non-rigid deformation that exerts a bounded distortion.
We formulate this as a constrained optimization problem and solve it using
a constrained, iterative reweighted least-squares algorithm. In each iteration
of this algorithm we solve a convex quadratic program obtaining a globally
optimal match over a subset of the bounded distortion transformations. We
further prove that a sequence of such iterations converges monotonically to
a critical point of our objective function. We show experimentally that this
algorithm produces excellent results on a number of test sets, in comparison
to several state-of-the-art approaches.

Categories and Subject Descriptors:

Additional Key Words and Phrases: image matching, feature correspon-
dence, bounded distortion

1. INTRODUCTION

Finding corresponding points between pairs of images is one of
the most fundamental problems in graphics and vision. Correspon-
dences can be used to transfer information between images or
models. They also form the basis for many approaches to three-
dimensional reconstruction, object recognition and retrieval. Iden-
tifying corresponding points is difficult because the shape of ob-
jects and their appearance can change across images or models, as
we may compare objects in different poses or even different ob-
jects from the same class. In such cases both the appearance of
corresponding points and their context can differ significantly.

Recent years have seen a surge of methods for matching point
features in the graphics and vision literature, see reviews in [Hei-
der et al. 2011; Tuytelaars and Mikolajczyk 2008]. These meth-
ods identify “interest points” in each image or model and associate
descriptors with them based on their local intensity or shape pat-
terns. These descriptors are used subsequently to produce a collec-
tion of candidate matches. However, alongside correct correspon-
dences these methods typically produce a considerable number of
incorrectly matched outliers. For example, Figure 1(middle) shows
two sets of potential corresponding pairs of points as extracted by
the SIFT algorithm [Lowe 2004]. These sets contain many incor-
rect pairs and only relatively few good ones. (Corresponding points
are marked by disks of the same color and size. Their unorganized
pattern in the right image is due to the large number of incorrect
matches.) Our method (right figures) selects a large subset of points
that are consistent with a global deformation of bounded distortion.

To make these correspondences useful, we must remove outliers.
Fortunately, these outliers are frequently geometrically inconsistent
with the correct matches. Judging geometric consistency requires
us to model how a configuration of points can change from one
image or surface to another. Most commonly, a low-dimensional,
parameterized model of deformations is used for this purpose. A

seminal example is RANSAC [Fischler and Bolles 1981], which is
often applied to similarity or affine distortions, or distortions that
obey epipolar constraints. However, many real-life correspondence
problems require a high-dimensional deformation model to account
for articulation of parts, non-rigid deformations of shape, or vari-
ations of shape between similar objects. This precludes the use of
RANSAC and generally makes it more difficult to enforce geomet-
ric consistency on correspondences. More recent methods, which
we discuss in Section 2, seek correspondences that respect these
high-dimensional deformations. These methods can suffer from
two problems. They may not offer a model of distortion that effec-
tively captures the available geometric information, and they may
lead to complex optimization problems that are attacked heuristi-
cally, or using relaxation. We offer an alternate approach to model-
ing distortion and optimizing matching.

Our method models deformations as bounded in extent. This of-
fers a good compromise; while some deformations are needed to
handle real-world effects, allowing arbitrary deformations loses all
geometric constraint on corresponding points. We then filter corre-
spondences as follows. Given a set of candidate pairs of correspon-
dences as input, {(pi,qi)}

N
i=1, we aim to find the maximal subset,{(

pi` ,qi`
)}n
`=1

, n ≤ N , that can be aligned with a low-distortion,
non-rigid deformation. That is, if we denote by FK the collection
of all deformations with distortion lower than or equal to some ac-
ceptable K (for some measure of distortion), we aim at solving

min
Φ ∈ FK

N∑
i=1

‖Φ (pi)− qi‖
0 , (1)

where we use the notation ‖·‖0 to denote the mixed 2, 0-norm,
that is, the `0-norm applied to the Euclidean distance between
Φ (pi) and qi, so ‖Φ (pi)− qi‖

0 = 1 if Φ(pi) 6= qi and
‖Φ (pi)− qi‖

0 = 0 otherwise.
We propose a novel algorithm to perform this minimization. Our

approach consists of solving a sequence of convex problems, each
of which provides a better approximation to the limit case ex-
pressed in (1). Since at each iteration we have a convex problem,
we can find its global minimizer and are therefore less sensitive to
local minima than classical gradient descent methods. To build the
convex problems we use three main ingredients: a) we approximate
the (non-smooth) `0 functional in Eq. (1) using a family of smooth
functionals, converging to it point-wise; b) we construct convex
spaces that approximate the space FK of K-bounded-distortion
deformations of triangular meshes following [Lipman 2012], which
will form the domain for the optimization; and c) we use a specially
tailored Constrained Iterative Reweighted Least Squares (IRLS) al-
gorithm. The algorithm solves a series of globally convex quadratic
programs to approximate minima of the smoothed `0 functionals
over the convex bounded-distortion deformation spaces. We further
prove that our algorithm converges monotonically to a critical point
of these smoothed functionals, and that it returns a deformation that
is guaranteed to be bijective with a bounded conformal distortion.
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Fig. 1. A collection of candidate pairs of correspondences extracted with SIFT (middle column), and the subset of consistent pairs originated from a bounded-
distortion deformation as produced by our algorithm (right column). Matching points are shown with disks of the same size and color.

We have tested our algorithm on different types of data, compar-
ing it with several state-of-the-art algorithms for non-rigid match-
ing and show superiority in precision and robustness to high rates
of outliers.

2. PREVIOUS WORK

There has been a great deal of work on modeling and matching
non-rigid objects [Montagnat et al. 2001; Nealen et al. 2006; van
Kaick et al. 2011]. In this section we discuss work that specifically
addresses the problem of matching point features in the presence
of non-rigid deformations. We also discuss prior work on Iterative
Reweighted Least Squares, which forms the basis for our algorithm
for non-rigid matching.

2.1 Low dimensional deformation spaces.

In case the unknown deformation Φ(pi`) ≈ qi` , of a subset{(
pi` ,qi`

)}n
`=1

is known to belong to some low dimensional de-
formation space D (e.g., D can be the group of affine maps, rigid
motions, homographies, or deformations that are consistent with
epipolar constraints), RANSAC-type [Fischler and Bolles 1981;
Brown and Lowe 2003] methods can be used to robustly find
this subset. In a nutshell, RANSAC aims at finding a large sub-
set of pairs that are consistent with a deformation in D up to an
ε-deviation. Following the point of view and notations of Eq. (1),
let Dε denote all deformations D up to an arbitrary perturbation by
ε, then RANSAC can be formulated precisely as (1), replacing the
deformation space FK with Dε,

min
Φ ∈ Dε

N∑
i=1

‖Φ (pi)− qi‖
0 . (2)

Dε can also be viewed as a set of bounded deformations, but typ-
ically a small value of ε is used, producing a close approximation
to a low-dimensional deformation space. Larger values of ε would
lead to a large, unstructured deformation space. In that sense our
method is a generalization of RANSAC to a set of low-distortion
non-rigid deformations FK , which in sharp contrast to D has (ar-
bitrary) high dimensionality.

2.2 Minimizing deformations.

One way to deal with deformations that cannot be characterized
by a small number of parameters is to use an energy function to
measure the complexity of a deformation, and then seek correspon-
dences that maximize the quality of the match while also minimiz-
ing the complexity of the deformation. [Chui and Rangarajan 2003]

use an iterative algorithm to minimize a deformation energy based
on thin-plate splines, while also minimizing the distance between
each point and the deformed point that matches it. [Belongie et al.
2002] optimize a similar energy, using shape context local descrip-
tors to assist in matching points. [Jian et al. 2005] perform a related,
non-rigid registration of point sets after first representing the point
sets using mixtures of Gaussians. [Hinton et al. 1993] perform digit
recognition using an elastic matching algorithm to minimize an en-
ergy that includes a spline-based deformation cost and a generative
model of appearance. While these methods all allow for some out-
liers, they rely on algorithms that iterate between assigning corre-
spondences and determining shape or deformation. This may make
them sensitive to the quality of the initialization and to large num-
bers of outliers.

2.3 Graph-based methods.

Another approach is to model deformations based on local relation-
ships between nearby pairs or triples of points. This approach par-
ticularly lends itself to graph-based matching approaches, in which
pairwise relations between points can be represented by edges. For
example, [Berg et al. 2005] optimize a cost that combines the sim-
ilarity of geometric blur descriptors and the distortion in the geo-
metric relationship between pairs of correspondences. A relaxation
changes the formulation to a simpler, yet globally solvable, prob-
lem. [Leordeanu and Hebert 2005] form the weighted adjacency
matrix of a graph that represents such costs, and use spectral re-
laxation, where the problem is posed as an eigenvector problem
that can efficiently be solved globally. [Zheng and Doermann 2006]
form a different graph, based on qualitative, neighborhood rela-
tionships, and use relaxation labeling to find correspondences that
preserve these relationships. [Duchenne et al. 2011] form a hyper-
graph that encodes higher order geometric constraints between tu-
ples and use an adjacency tensor to represent these relations. They
also use a spectral relaxation to solve this. Another approach is to
work directly with the low-distortion deformation space and per-
form combinatorial optimization [Gelfand et al. 2005; Funkhouser
and Shilane 2006], or use greedy optimization [Tevs et al. 2009;
Bronstein et al. 2006]. In both cases only a small fraction of the
possible correspondences can be searched in a reasonable amount
of time and the solution can be easily stuck in a local minimum.
In general, graph-based formulations of matching lead to NP-hard
problems that are attacked either with search or with a relaxation.
Our approach, in contrast, represents the deformation globally as a
bijective map, using piecewise affine transformations, while mea-
suring the amount of distortion based on the relationships between
triples of correspondences.
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2.4 Patch-based methods.

Recently, patched based methods have been incorporated with a lo-
cal geometric consistency prior to achieve dense correspondences
between images. Patch-match [Barnes et al. 2009] looks for cor-
responding patches in the vicinity of a corresponding patch to im-
prove geometric consistency. [HaCohen et al. 2011] generalize this
to include color changes and other transformations beyond trans-
lation. Since patch-match generally grows corresponding regions
in a bottom-up fashion it can easily produce globally inconsistent
correspondences due to symmetries or repeating/similar structures
in the image. Our method imposes global consistency, which can
account for repeating patterns.

2.5 Iterative Reweighted Least Squares.

IRLS is a common method for minimizing `p norms, p ≥ 0 by
solving a sequence of convex quadratic problems [Lawson 1961].
Constrained IRLS has been used recently in the context of sparse
coding and compressed sensing [Daubechies et al. 2010; Char-
trand and Yin 2008], however in these cases the constraints are
affine spaces and not more general convex sets. Some works gen-
eralize IRLS to the constrained setting [Eckhardt 1980; Bissantz
et al. 2009] and provide some theoretical justification. We follow
the general construction in these papers, but provide a particular
derivation for the non-convex case of `p, 0 < p < 1, for which we
also prove monotonic convergence to a local critical point. Lastly,
we note that alternative `p optimization techniques exist aside from
IRLS [Bouaziz et al. 2013].

3. APPROACH

Given as input candidate corresponding pairs of points in the plane
(pi,qi) ∈ R2 × R2, i = 1, ..,N , our goal is to extract a maximal
subset {

(
pi` ,qi`

)
}, ` = 1, .., n ≤ N that can be aligned with a

low-distortion deformation Φ.
We consider deformations that are piecewise affine. This means

that Φ is determined by a triangulation of the planar point set,
{pi}, along with the target location of each point, which we de-
note p̃i = Φ(pi). We abuse notation and denote by Φ the matrix of
unknowns, namely Φ = (p̃1, p̃2, .., p̃N ) ∈ R2×N . We use a Delau-
nay triangulation of {pi}, and denote the triangulation T = (V,F),
where V = {pi} is the vertex set, and F = {fj} is the face set,
indexed by oriented triplets of vertices j = (i1, i2, i3) that are as-
sumed to be not co-linear. The map Φ is then extended linearly to
each face, e.g., the face fj is mapped by the affine transformation
Aj(p) = Ajp + tj , where tj ∈ R2×1, Aj ∈ R2×2 are set uniquely
by requiring thatAj(p`) = p̃`, ` = i1, i2, i3. (Note that we assume
pi, p̃i,qi ∈ R2×1, that is, all are column vectors.) These equations
can be summarized in the following linear system:

(
p̃i1 , p̃i2 , p̃i3

)
= [Aj tj ]

(
pi1 pi2 pi3
1 1 1

)
. (3)

Note that given point correspondences ({pi} and {p̃i}) Aj and tj
can readily be recovered by inverting the right-most matrix, and
that the relation between p̃i and Aj , tj is linear in p̃i. Let us denote
this linear relation by Aj = Aj(Φ).

Our goal is to align as many of the p̃i’s as we can with the qi’s.
This is equivalent to minimizing the functional:

E(Φ) =
N∑
i=1

‖p̃i − qi‖
0
, (4)

with the mixed `2,0-norm defined in (1). In general, we cannot
match all pairs of points because we ban matchings that induce
high distortion of our triangulation T.

Next, we quantify the distortion of triangular meshes. Con-
sider two triangular faces ∆ = ∆(pi1 ,pi2 ,pi3) and ∆̃ =
∆(p̃i1 , p̃i2 , p̃i3) related by the affine transformation p̃ = Aj(p) =
Ajp + tj . We measure the distortion induced by Aj using the con-
formal distortion of its linear part D(Aj) defined as

D(Aj) =
σmax(Aj)

σmin(Aj)
, (5)

where σmax(Aj) and σmin(Aj) respectively are the maximal and
minimal singular values of Aj . Clearly, D(Aj) is invariant to
scale changes and measures deviation from similarity. In particular,
D(Aj) = 1 when (and only when) ∆ and ∆̃ are perfectly similar
triangles, and otherwise D(Aj) > 1. Note that this measure differs
from [Duchenne et al. 2011]’s who compared triangles by the sine
of their angles. We also do not want to allow any triangle to be re-
flected (flipped), leading to loss of injectivity of the deformation Φ.
A triangle fj is reflected if and only if det(Aj) < 0.

Going back to Eq. (4) we now add these low-distortion con-
straints to complete our problem formulation:

minΦ E(Φ) (6)

s.t.

 D(Aj(Φ)) ≤ K
det(Aj(Φ)) > 0

Φ ∈ R2×N
(7)

where Aj is expressed as a constant linear combination of the un-
knowns p̃i, as can be computed from Eq. (3).

The optimization problem (6)-(7) presents several challenges: a)
its functional E is not smooth and is non-convex; and b) the set
of constraints (bounded conformal distortion, and no reflections)
is non-convex. To solve this problem we introduce a hierarchy of
simpler (smooth and convex) problems that converge locally to the
non-convex problem above.

We separately treat the functional in Eq. (6) and the constraints
in Eq. (7). First, the constraints (7) are replaced with a convex sub-
set of constraints using a recent characterization of the space of
bounded distortion mappings of triangular meshes [Lipman 2012].
Second, we approximate the `0 functional E in Eqs. (4),(6) by a
sequence of smooth functionals Eδ and optimize each functional
in this sequence using a generalization of the method of Iterative
Reweighted Least Squares (IRLS), where a quadratic functional is
solved over the convex space of bounded distortion deformations.
Using these, we construct a straightforward algorithm and prove
that it converges monotonically to a critical point of Eδ . Further-
more, the deformation returned by the algorithm is guaranteed to
be bijective with a conformal distortion bound of K.

Next, we review the construction of the convex bounded distor-
tion deformation spaces, and then present the generalized IRLS that
furnishes our algorithm.

3.1 Convex bounded-distortion mapping spaces

In this section we review the space of bounded distortion mappings
of triangular meshes in the plane as discussed in [Lipman 2012].
We reformulate and adapt the equations to our setting.

A 2× 2 matrix A can be uniquely decomposed as follows

A =
A−At + tr(A)I

2
+
A+At − tr(A)I

2
= B + C, (8)
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whereB is a similarity matrix (i.e., rotation and isotropic scale) and
C is an anti–similarity matrix (i.e., a similarity matrix composed
with a reflection).

The matrix A will have bounded conformal distortion of K and
will not be a reflection (i.e., satisfies D(A) ≤ K and det(A) ≥ 0)
if its reflection component C is sufficiently small with respect to its
similarity component B, or, more precisely, if

‖C‖F ≤
K − 1

K + 1
‖B‖F , (9)

where ‖·‖F denotes the Frobenius norm. In case we want strict in-
equality, i.e., det(A) > 0, we should add to Eq. (9) the requirement
thatB (and henceA) is not the zero matrix. However, as we explain
later, in our case either all matrices Aj are zero together or none is
zero, and hence we will use Eq. (9) as is. Let us denote the set of
all matrices A that satisfy Eq. (9) by C.

Eq. (9) is non-convex due to the use of the Frobenius norm on the
right hand side of the equation. We will therefore consider the max-
imal convex subsets of C. (A convex set is maximal in C if no other
convex subset of C contains it.) These subsets are characterized by
the requirement that the rotation angle is bounded, where we define
the rotation angle of a matrix A as the rotation angle induced by its
similarity component B, and denote it by angleB.

The collection of maximal convex subsets Cθ ⊂ C is parameter-
ized by a choice of a reference rotation angle θ for all choices of
possible rotations, −π < θ ≤ π. Let the matrix Rθ denote rotation
by θ, Cθ is the set of matrices

Cθ =

{
C +BRθ

∣∣∣∣‖C‖F ≤ K − 1

K + 1

tr(B)√
2

}
, (10)

where tr(B) denotes the trace of the matrix B. Intuitively, in gen-
eral 1√

2
tr(B) ≤ ‖B‖F , and therefore if A ∈ Cθ then in particular

A satisfies Eq. (9). The set Cθ ⊂ C balances between the distortion
and rotation it allows, i.e., the set of allowed rotations in Cθ shrinks
with the amount of distortion applied. Formally, the maximal rota-
tion angle allowed in Cθ is defined by the following equation

|θmax − θ| ≤ cos−1

(
K + 1

K − 1

k − 1

k + 1

)
, (11)

where k is the conformal distortion of a matrix A in Cθ . That is, for
similarity, k = 1, and hence the maximal rotation angle of simi-
larities contained in Cθ is always in the range (θ − π/2, θ + π/2)
regardless of the valueK, while for matrices with conformal distor-
tion k = K no rotation except θ is allowed. Intermediate rotations
are allowed for k ∈ (1,K) as can be read from Eq. (11).

Eq. (10) formulate convex cone constraints and a second order
cone program (SOCP) solvers can be used to optimize a convex
quadratic functional over this space. This renders SOCP solvers
suitable for the framework presented in this paper. However, it is
currently easier to work with linear inequalities rather than cone
constraints and several suggestions for such further relaxations can
be found in [Lipman 2012; Bommes et al. 2013]. Such relaxations
can be achieved by using equivalence of norms, for example of the
0 and 2-norms; for 2 × 2 matrices, ‖C‖∞ ≤ ‖C‖F ≤ 2 ‖C‖∞,
where ‖C‖∞ := max {|(C)k`|}. This leads to the following alter-
native definition of Cθ (similarly to Eq. (10)):

Cθ =

{
C +BRθ

∣∣∣∣‖C‖∞ ≤ K − 1

K + 1

tr(B)

2
√

2

}
. (12)

We note that this space: a) is smaller than the one defined via
Eq. (10); and b) similarly to Eq. (10) have a “nesting” property:

any matrix A ∈ Cθ , for some θ is also contained in the convex sub-
set Cθ′ with θ′ = angleB. This property has a key role in proving
the monotonicity of our algorithm. Note that this property does not
hold with the infinity-norm relaxed spaces in [Lipman 2012].

An alternative relaxation is suggested in Bommes et al. [2013]
using the 1-norm. Using the 1-norm and different rotations for the
similarity and anti-similarity parts, i.e.,

Cθ,ψ =

{
CRψ +BRθ

∣∣∣∣‖C‖1 ≤ K − 1

K + 1

tr(B)√
2

}
, (13)

where ‖C‖1 =
∑
k` |(C)k`|. One can build a different relaxation

of Eq. (10) that also posses the nesting properties and has the ad-
vantage of being able to represent any matrix in C. However, this
space did not prove advantageous on the experiments in this paper
and so we stick with the definition in Eq. (12).

The above discussion concentrated on one matrix A. For a
bounded-distortion, piecewise-affine deformation of the triangula-
tion T, we will have an angle θj defining a convex space Cθj per
face fj ∈ F. By θ =

(
θ1, ..., θ|F|

)
we will denote the vector of all

angles, and denote the space Cθ to be the set of all piecewise-affine
deformations Φ such that their matrices satisfy Aj ∈ Cθj , that is

Cθ =
{

Φ ∈ R2×N |Aj(Φ) ∈ Cθj , for all fj ∈ F
}
. (14)

Lastly, the space of bounded distortions Cθ contains locally in-
jective mappings in the sense that no triangle is reflected, but it does
not forbid fold-overs (e.g., two points belonging to different trian-
gles mapped to the same point). To guarantee no fold-overs it is
enough to make sure the boundary of the mesh T is mapped bijec-
tively (see proof in [Lipman 2012]). We achieve this by adding to
the vertex set V new vertices {pi′} placed on the scaled bounding
box of {pi} (we used 130% scale). We took approximately

√
N

such points. The new vertices pi′ are mapped to some new loca-
tions p̃i′ under the one rule that they all are mapped via the same
affine transformation. That is,

p̃i′ =

(
a b
c d

)
pi′ +

(
t1
t2

)
, (15)

where a, b, c, d, t1, t2 are all new unknowns. We do not restrict the
affinity a, b, c, d, t1, t2 in any way. Any Φ ∈ Cθ that is not the
constant mapping (i.e., mapping all points to a single point) can be
shown to be a bijection. Therefore, either all Aj(Φ) are zero, or
none is zero.

3.2 Optimizing the `0 deformation functional

In this section we deal with the functional E in our optimization
problem defined in Eq. (4). The two main challenges are the fact
that E is neither smooth nor convex.

Our first task is to replace the functional E by a smooth func-
tional, so we can construct a method to approximate its minima. We
will consider the following standard family of smooth functionals

Ep,δ(Φ) =

N∑
i=1

(
‖p̃i − qi‖

2
+ δ
) p

2
. (16)

Note that for every p > 0 and δ > 0 these functionals are smooth,
and if we take a sequence δ, p → 0 such that δ approaches zero
much faster than p (e.g., δ = e−1/p2 ) then Ep,δ(Φ) → E(Φ) for
every Φ (point-wise convergence). In this paper we will set p to
be a small constant. (Throughout this paper we used p = 0.001.)
Henceforth, let us denote Eδ = Ep,δ and treat p as constant. In the
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Algorithm 1: Low-distortion correspondence filtering.
Input:

Candidate correspondences (pi,qi) ∈ R2 ×R2, i = 1, ..,N
Distortion bound K ≥ 1

Output:
Subset of pairs

(
pi` ,qi`

)
, ` = 1, .., n ≤ N

Bounded distortion bijective map Φ

Triangulate {pi}
N
i=1 to get T = (V,F);

Set δ(0) ≈ diam {pi};
Set p̃i = pi;
Set weights w(0)

i according to Eq. (20);
Set θ(0)

j = 0;
m = 0;
while δ(m) > δmin and m < mmax do

while Eδ(m)(Φ(m))−Eδ(m−1)(Φ(m−1)) > ε do
m = m+ 1;
Set δ(m) = δ(m−1);
Set weights w(m−1)

i according to Eq. (20);
Set angles θ(m−1)

j according to Eq. (21);
Use quadratic programming to solve for Φ(m) via
Eqs. (17), (18);

Set δ(m) = δ(m)/2;

Return Φ, and all pairs (pi,qi) for which w∞i > 1
2

;

evaluation section we show that changing the value p during opti-
mization did not produce any advantage over keeping p constant.

−5 0 5

Another difficulty in the functional E
is that it is not convex. An important
property of the functional family Eδ that
helps in avoiding local minima is that its
derivatives are inversely proportional to δ;
for large δ the derivatives of Eδ will be
bounded by a small number (in a bounded
domain), intuitively smoothing out shal-
low local minima. To visualize this ef-
fect, we show in the inset graphs of the functional Eδ(x) =∑3
i=1

(
|x− qi|2 + δ

) p
2

, where x ∈ [−5, 5], q1 = −3, q2 =

1, q3 = 2, and for different values of δ (top corresponds to large
δ = 10, bottom to small δ = 0.02 values). In this example we
took p = 0.25. The global minimum of this functional is achieved
at x = q2 = 1 and, as evident from the landscape of the reddish
graphs, starting the optimization at large values of δ might help in
avoiding the local minima at x = −3, 2.

Our algorithm starts with some initial large δ (e.g., proportional
to the diameter of the image) and approximates the minimizer of
Eδ subject to the constraints that the deformation Φ has bounded
distortion K. Once we converge, we decrease δ by δ ← δ/2 and
repeat the process, until δ becomes less than a threshold δ < δmin.
Then we end up with a minimizer Φ of Eδ = Ep,δmin

with small
δmin and p. Since thisEp,δmin

approximatesE point-wise this min-
imizer Φ is the desired output. The algorithm is summarized in Al-
gorithm 1.

To optimize the functional Eδ with the bounded distortion con-
straints we use a generalization of Iterative Reweighted Least
Squares (IRLS), solving a sequence of linearly constrained convex

quadratic problems:

Φ(m) = argmin
Φ

E
(m)
δ (Φ) (17)

s.t. Φ ∈ Cθ(m−1) (18)

where,

E
(m)
δ (Φ) =

N∑
i=1

w
(m−1)
i ‖p̃i − qi‖

2
, (19)

w
(m−1)
i =

(∥∥∥p̃(m−1)
i − qi

∥∥∥2

+ δ

) p
2−1

, (20)

θ
(m−1)
j = angle B

(m−1)
j , (21)

and Cθ(m−1) is defined in (14) (with the use of equations (12)
and (15)). The matrix B(m)

j is the similarity component of A(m)
j

(see Eq. (8)), and as before angleB
(m)
j denotes its rotation angle.

Intuitively, this angle sets the maximal convex space around the
orientation determined by the solution of the previous iteration, al-
lowing maximal flexibility in the deformation while staying in the
convex regime.

For notational convenience we denote by δ(m) the value of δ
used in the m’th iteration of the algorithm. Note that δ usually re-
mains constant between iterations, except whenever Eδ(Φ) con-
verges. The algorithm can be shown to have desirable convergence
properties and guarantees summarized in the following theorem,

THEOREM 1. Algorithm 1 has the following properties. The en-
ergy E(Φ(m), δ(m)) ≡ Eδ(m)(Φ(m)) is monotonically decreasing,
that is

E(Φ(m+1), δ(m+1)) ≤ E(Φ(m), δ(m)),

and the series E(Φ(m), δ(m)) converges to a critical value of the
functional Eδ , for some δ ≤ δmin on a convex subset of the K-
bounded distortion deformation space. Moreover, the algorithm is
guaranteed to output either a constant solution or a bijective de-
formation Φ with K-bounded conformal distortion.

In fact it is readily possible to avoid the constant solution by adding
another inequality in Eq. (10), but in practice we never encountered
such a solution and it is unlikely to be a minimum in case the cor-
respondences pi,qi are general.

The proof of Theorem 1 is given in the Appendix. Current the-
ory analyzing IRLS does not seem to encapsulate our case where
both 0 < p < 1 and the convex constraints are changed during
iterations. To our knowledge, the closest theory deals with a con-
vex functional and a fixed convex constraint space [Bissantz et al.
2009]. Therefore we generalize this analysis to include our sce-
nario.

4. EXPERIMENTS AND EVALUATION

4.1 Comparisons to other techniques

We tested our method both in simulations and in experiments with
real images and compared our method to a collection of techniques.
Our Matlab implementation uses Matlab’s quadratic programming
routine to solve for Φ(m) via Eqs. (17), (18). Throughout our exper-
iments we use an `p norm with constant p = 0.001, and a distortion
bound of K = 3. We further demonstrate below that our method
is not sensitive to these choices. A final optional implementation
comment is that once the algorithm converged, some points p̃i may
reach a location very close to their target qi but not to within the
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Fig. 2. Simulations with 6 out of the 24 TPS deformations used.

limits of numerical precision. This can happen when the particular
triangulation prevents it. In these cases it is possible to snap these
vertices in postprocessing (in our implementation we use the dis-
tance threshold of 5 pixels, where image typical size is 300 × 400
pixels).

Spectral-type. In this category we compared to the techniques of
[Leordeanu and Hebert 2005] (denoted Spectral) and [Duchenne
et al. 2011] (denoted Tensor), who use spectral relaxation tech-
niques to minimize energies measuring consistency of relations be-
tween (respectively) pairs and triplets of points. The default de-
sign of each method allows any input point set to match any other
one, returning a match for every point. We introduced slight mod-
ifications to enable the algorithms to select from candidate pairs
of matches from the input and to reject outliers. Briefly, the cost
matrix and tensor for the respective methods were populated us-
ing only the input candidate pairs (as opposed to all pairs in orig-
inal methods). For the Spectral method, the cost function penal-
izes changes in distances between pairs of feature points. The cost
function is minimized by solving an eigenvector problem. Then,
to produce the final pairs of correspondences, we set a rejection
threshold to their greedy post-processing step. Similarly, the Ten-
sor method uses a cost function that penalizes changes in angles
between triplets of feature points. Each triplet is represented by a
3-dimensional vector containing the sines of the three angles pro-

2 5 10 15 20

RANSAC-AFF

% diameterTo
ta

l F
−M

ea
su

re

0.5 1 2 5 10

Spectral

% diameter
50 60 70 80 90

Tensor

% ex. outliers
0.20.5 1 2 4

Lp+Smooth

λ

Fig. 3. Parameter choices for RANSAC-AFF, Spectral, Tensor and
Lp+Smooth. The graphs show the performance (sum of area under the F-
measure curve) over all 24 experiments as a function of parameter values.
From left to right: (1) threshold for inlier distance for RANSAC-AFF as a
fraction of the diameter, (2) threshold for postprocessing rejection for Spec-
tral as a fraction of the diameter, (3) cost of matching of dummy node tuned
to match a given fraction of outliers in Tensor, (4) weight of the smoothness
term in the Baseline algorithm. The results shown for the synthetic exper-
iments were those that gave maximum performance (15% for RANSAC-
AFF, 2% for Spectral, 70% for Tensor, 0.5 for Baseline). The results shown
on real images were obtained with identical parameters.

duced by the triplet and the cost function then penalizes differences
between 2 such vectors. A spectral approximation is used to mini-
mize this functional. Finally, we identify outlier matches by match-
ing points to a dummy node (as the authors suggest).

RANSAC. In this category we compared to the RANSAC [Fis-
chler and Bolles 1981] algorithm using an affine (denoted
RANSAC-AFF) and epipolar (denoted RANSAC-EPI) model (us-
ing Matlab’s GeometricTransformEstimator object and estimate-
FundamentalMatrix function, respectively), allowing for a suitable
perturbation threshold to handle deformations.

Lp+Smooth. To illustrate the need for having the bounded dis-
tortion constraints (Eq. (18)) instead of a more standard regulariza-
tion term, we have implemented a version of our algorithm in which
we dropped the BD constraints (18) and added instead the standard
smoothness term λ

∫
‖∆Φ‖2, where ∆ denotes the Laplacian op-

erator. Specifically, let M denote the (diagonal) mass matrix and L
the cotangent Laplacian of the triangulation T, the smoothness term
discretizes as λtr(ΦTLM−1LΦ) (see, e.g., [Jacobson et al. 2011;
Lipman 2012]). For this algorithm λ serves as the main parameter
balancing the matching energy and the map regularity. Similarly to
our algorithm, we constrained the boundary points to undergo the
same affine transformation.

Image based. This category includes algorithms that directly
use image intensities to find correspondences. Here we used Large
Displacement Optical Flow (LDOF) [Brox and Malik 2011],
and patch-match [HaCohen et al. 2011]. As these algorithms use
image intensities they do not address our problem exactly, but it is
nevertheless instructive to compare to these popular techniques.

In all cases excluding the image based methods we have chosen
the main parameters of each algorithm to maximize performance
on a synthetic data set as described below, see Figure 3. We then
used those parameters for the experiments with real images.

4.2 Synthetic Data

We tested our algorithm on synthetic non-rigid deformations that
we produced as follows. We have produced 24 random Thin-Plate
Splines (TPS) mappings of a square such that the mean aspect-ratio
distortion plus twice its standard deviation is smaller or equal to 3.
For each TPS we tested our algorithm by producing n = 49 inlier
pairs of points by sampling uniformly from the square p1, ..,pn
(as a jittered 7 × 7 grid) and applying the random TPS Ψ to this
set of points, that is qi = Ψ(pi). To produce a realistic outlier
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Fig. 4. Left: our method with different choices of quasi-norms p, and also
for a version of the algorithm in which p is decreased during the optimiza-
tion (graph shown with TPS-6). Right: The effect of varying the parameter
K (graph shows the average performance obtained for TPS-6 with the dif-
ferent outlier fractions).

model, we added N − n random outlier pairs (pi,qi), i = n +
1, ..,N according to a distribution of outliers estimated from real
images. Specifically, we constructed an error histogram for SIFT
pairs (p′i,q′i) in real images by measuring the distance of q′i to the
ground-truth correspondence of p′i marked by a human observer.
We then selected outlier pairs (pi,qi) by first choosing pi, i =
n, ..,N uniformly in the square, and then selecting qi randomly
such that its distance to Ψ(pi) follows the same distribution as the
SIFT error histogram.

For each TPS we have created 100 random trials with an out-
lier fraction in the range [0.2, 0.95]. We scored every trial by its
recall and precision rates and computed the F-measure as the har-
monic mean of the average recall and precision rates over all trials
as a function of fraction of outliers. Figure 2 shows typical 6 out
of the 24 the TPS mappings along with a plot of F-measures ob-
tained for our method compared to Spectral, Tensor, Lp+Smooth,
and RANSAC-AFF. Our method outperforms the other methods in
almost all cases. Moreover, the performance of our method remains
high even with a very large fraction of outliers.

Sensitivity to parameters. We further tested the sensitivity of
our algorithm to different parameter settings. In particular, we ap-
plied our method with several different choices of quasi-norm p in
the (0, 1)-interval as well as in a setup in which p is decreased dur-
ing the optimization. Figure 4 shows that all of these choices lead
to nearly identical performance. In addition we show the effect of
varying K (the distortion bound) while holding the other parame-
ters fixed at their chosen value. Clearly the selected values for K
(i.e., K = 3) is sufficient to accommodate the tested deformation,
but as the graphs show, the performance remains stable for a wide
range of values.

4.3 Real images

Next we show results on real image pairs. We tested our method
on a variety of image pairs depicting a variety of sceneries in three
categories, images of dynamic scenes, images of static scenes, and
images of different animals of the same breed. In all cases we
found initial correspondences by matching SIFT descriptors (using
the VLFeat software package [Vedaldi and Fulkerson ]) and made
sure that no point belongs to more than one SIFT pair. We then ap-
plied our method along with Spectral, Tensor, Lp+Smooth, LDOF,
RANSAC-AFF and RANSAC-EPI to remove outliers. In all exper-
iments we used the parameters that produced the best performance
for the synthetic data (see Section 4.2, and Figure 3).

Our results are shown in Figures 5-7. To enhance visualization of
matches we show matching points with disks of the same size and

Fig. 8. A series of pairs of frames with increasing deformation (top to
bottom). The number of inliers detected with our algorithm decreases as the
deformation grows larger.

color, with the color and size respectively varying according to the
horizontal and vertical position of points in the left image. To fur-
ther evaluate our results we had a human observer marking ground
truth correspondences for all real images used. We show correspon-
dence errors in each right image by connecting with a red line each
correspondence chosen and the respective ground truth correspon-
dence (to reduce clutter we do not use the red line markings in the
SIFT images). The goal for each method therefore is to select as
many of the SIFT pairs that are compatible with the ground truth or
have small positional errors (indicated by short red lines) while dis-
carding the ones that have large positional errors (indicated by long
red lines). We further highlight with black disks good correspon-
dences missed by the particular method tested. It is clear that our
method outperforms the other methods in terms of both precision
and recall.

Figure 5 (top) shows for example a scene where two subjects
are moving away from each other. This is a challenging case as
distances between feature points within each subject are preserved
but distances across the subjects are not. Also the location of the
subject w.r.t. the background is changing. Most methods miss one
of the subjects (or alternatively accept many outliers) while our
method is able to capture the full motion. In other examples in
this Figure and Figures 6,7 please note that previous work either
produce a high precision set of pairs but misses important chunks
of good pairs (as indicated by the black disks in these figures), or
achieves high recall rate (e.g., RANSAC-AFF) at the price of intro-
ducing quite a few false positives (see the long red lines to indicate
such pairs). Figure 6 demonstrates the performance of our algo-
rithm on static scenes that are captured from different viewpoints.
These pairs are related geometrically by a fundamental matrix,
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Fig. 9. Point matches obtained with the NRDC algorithm [HaCohen et al.
2011] (points are sampled uniformly from dense results). Notice sets of
points incorrectly matched due to symmetry and repetitions (top), and un-
matched areas due to large deformations (bottom).

and so corresponding points should lie along epipolar constraints.
RANSAC-EPI finds the best fundamental matrix that fits the input
pairs while discarding outliers. As the figure shows, it does so effec-
tively, although it accepts some outlier matches when those happen
to fall accidentally along their respective epipolar lines. Our algo-
rithm, in contrast, is not constructed with static scenes in mind. Yet,
as the figure shows, it performs reasonably well even in this case.

Figure 8 demonstrates the performance of our algorithm over a
series of pairs of images that exhibit increasing deformation levels.
As expected our method’s performance deteriorates as the deforma-
tion increases. This can be attributed to two things: first, SIFT tends
to produce fewer inliers for larger deformations, and second, large
deformations could violate our bounded distortion assumption.

We next relate our results to patch-based methods. Recent work
in this directions aims to extract “local sets of dense correspon-
dences between two images with some shared content” [HaCohen
et al. 2011] by matching intensity patches (up to local deforma-
tions) with a local geometric consistency prior using the Patch-
Match algorithm [Barnes et al. 2009]. This approach indeed often
finds accurate matches, but, as we demonstrate in Fig. 9, can fail to
correctly locate repeated structures or breaks in the presence of a
strong deformation. We believe it would be interesting to comple-
ment these methods with geometric consistency as is done with our
method.

Figure 10 shows the mesh T (top) and its deformed version (bot-
tom), as-well as highlights the subset of pairs selected by our algo-
rithm (i.e. vertices that converged to the SIFT input pairs) by red
disks.

Lastly, we present a table recording the precision, recall and
F-measure rates achieved by the tested algorithms. We define the
ground-truth set to include all SIFT corresponding pairs that devi-
ate up-to 5 pixels from the marked ground-truth map. It is important

Fig. 10. The mesh before (top) and after (bottom) the deformation. The red
disks depict “snapped” vertices (i.e., coincide with SIFT pairs as chosen by
the `0 optimization).

to note that precision rates are overall relatively low for three rea-
sons: 1) our ground-truth is defined according to a human observer
and might have some discrepancies with some of the geometrically
consistent SIFT pairs; 2) we set our pair’s acceptance threshold to
be 5 pixels which is rather conservative; and 3) for the RANSAC
methods, we took relatively large inlier acceptance parameter in
order to be able to deal with larger distortions (see Figure 3).

method Precision Recall F-measure
BD 56.0 94.0 70.1

Lp+Smooth 32.9 64.1 43.5
LDOF 49.5 20.2 28.7

RANSAC-AFF 41.9 99.7 59.0
RANSAC-EPI 42.5 54.9 47.9

Spectral 50.7 57.5 53.9
Tensor 36.9 27.7 31.6

Timings. Our algorithm requires solving a quadratic program in
each iteration of the IRLS. Typical run times on Intel Xeon 2.3GHz
are: 63s for |V| = 363, 102s for |V| = 411, 200s for |V| = 1043.
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5. CONCLUSION

This paper focuses on the problem of using geometric consis-
tency as a filter, to separate outliers from correct matches between
point features in images. We account for deformations in the ap-
parent shape of objects by allowing for bounded conformal distor-
tion in the configuration of the points. From a modeling perspec-
tive, bounded distortion allows us to account for some deformation
while still retaining much of the geometric information that enables
us to find correct correspondences. Algorithmically, bounded dis-
tortion is attractive because it enables us to approximate the set of
distortions with maximal convex sets. Using this approximation, an
iterative, reweighted least squares optimization can find good solu-
tions. This is because our algorithm proceeds by finding the glob-
ally optimal solution to more and more accurate approximations
to the complete, non-convex problem of aligning a maximal set of
points with limited distortion. We are also able to prove that our al-
gorithm converges to a critical point of this non-convex problem.
We further show experimentally that our algorithm significantly
outperforms several state-of-the-art algorithms.

We feel that our algorithm makes effective use of geometric con-
straints in removing outliers in matching. However, matching im-
ages in which there are significant variations due to changes in
shape or other viewing conditions remains a challenging problem
with many interesting open questions. For example, when defor-
mations and lighting changes are large, existing descriptors such
as SIFT may not be stable enough to propose a sufficient number
of correct matches. Building descriptors that are also resilient to
bounded conformal distortion would be an interesting direction for
future work. Another limitation of our algorithm is that in scenes
where the deformation is discontinuous our model can only supply
sub-optimal results because it can only represent continuous de-
formations. The question of how to generalize to non-continuous
deformations is also left for future work.

APPENDIX

THEOREM 1. Algorithm 1 has the following properties. The energy
E(Φ(m), δ(m)) ≡ Eδ(m)(Φ(m)) is monotonically decreasing, that
is

E(Φ(m+1), δ(m+1)) ≤ E(Φ(m), δ(m)),

and the series E(Φ(m), δ(m)) converges to a critical value of
the functional Eδ , for some δ ≤ δmin on a convex subset of the
K-bounded distortion deformation space. Moreover, the algorithm
is guaranteed to output either a constant solution or a bijective
deformation Φ with K-bounded conformal distortion.

To prove this theorem we need the following theorem, which
shows that the inner loop of Algorithm 1, in which δ is fixed, con-
verges:

THEOREM 2. The iteration described by (17),(18) produces
monotonically decreasing functional values Eδ(Φ

(m+1)) ≤
Eδ(Φ

(m)), and the sequence of values Eδ(Φ(m)) converges to a
critical value of the functional Eδ on a convex subset of the K-
bounded distortion deformation space.

Given Theorem 2 we can readily prove Theorem 1:

PROOF. (Theorem 1) Let us denote by emδ = E(Φ(m), δ(m)) =
Eδ(m)(Φ(m)) the series produced by the algorithm. For a fixed
δ(m) = δ, Theorem 2 implies that emδ ≥ em+1

δ ≥ 0 and therefore

has to converge. At convergence (that is, for sufficiently large m)
the algorithm sets δ(m) := δ(m)/2 and continues. By the definition
of Eδ we have

emδ ≥ emδ/2.
Therefore, the series emδ is monotonically decreasing and not
smaller than zero throughout the execution of the algorithm. There-
fore, it converges. When the algorithm terminates the entire series
emδ converged to a critical value of Eδ for some δ ≤ δmin (by The-
orem 2).
By construction, the final returned Φ(m) ∈ Cθ(m−1) and so in par-
ticular has conformal distortion ≤ K. Also since it includes no
reflected triangles and since the boundary is mapped bijectively
(when excluding the case that the boundary is mapped to a sin-
gle point, leading to the constant solution) it can be shown to be a
bijection.

We now prove Theorem 2.

PROOF. (Theorem 2) The proof consists of several parts:
(i) we show the monotonicity of the (non-convex) energy
Eδ(Φ

(m+1)) ≤ Eδ(Φ
(m)); (ii) we show that Φ(m) has a conver-

gent subsequence Φ(mk) → Φ∗; (iii) we show that Φ∗ ∈ Cθ∗ for
some angles θ∗; and (iv) we show that Φ∗ is a critical points of Eδ
over the convex space Cθ∗ .

Part (i): Let us define the following functions similarly to [Bis-
santz et al. 2009]

h(r) =
(
r2 + δ

) p
2 (22)

Eδ(Φ) =

N∑
i=1

h (‖p̃i − qi‖) (23)

g(r, s) = h(r) +
p

2

(
r2 + δ

) p
2−1 (

s2 − r2
)

(24)

G(Φ,Φ′) =

N∑
i=1

g
(
‖p̃i − qi‖,

∥∥p̃′i − qi
∥∥) , (25)

where Φ = (p̃1, p̃2, .., p̃N ) ∈ R2×N are unknown (and Φ′ is de-
fined similarly). Note that

Φ(m) = arg min
Φ∈C

θ(m−1)

G
(
Φ(m−1),Φ

)
. (26)

We prove below in Lemma 3 that g(r, s) satisfies two properties: a)
g(r, r) = h(r); and b) g(s, s) ≤ g(r, s) for all r, s > 0, and hence,

Eδ(Φ
(m)) = G

(
Φ(m),Φ(m)

)
≤ G

(
Φ(m−1),Φ(m)

)
≤ G

(
Φ(m−1),Φ(m−1)

)
= Eδ(Φ

(m−1)),

where for the second inequality we use (26) and the fact that
Φ(m−1) ∈ Cθ(m−1) . The latter inclusion holds because we set
θ(m−1) based on the angles in Φ(m−1).
Part (ii): Since∥∥∥p̃(m)

i − qi
∥∥∥p ≤ h(∥∥∥p̃(m)

i − qi
∥∥∥) ≤ Eδ(Φ(m)) ≤ Eδ(Φ(0)),

we have that
∥∥Φ(m)

∥∥2

F
=
∑
i

∥∥∥p̃(m)
i

∥∥∥2

is bounded for all m and

therefore has a convergent subsequence Φ(mk) → Φ∗.
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Part (iii): B(mk)
j , C

(mk)
j are defined as a linear functions (and

hence continuous) in the entries of A(mk)
j (see (8)) and therefore

also converges to the similarity (resp., anti–similarity) parts of the
limit map, i.e. B(mk)

j → B∗j , C
(mk)
j → C∗j . We want to show that

A∗j ∈ Cθ∗j , for some angle θ∗j . Since A(mk)
j ∈ C

θ
(mk−1)
j

it satisfies

in particular (see (12))∥∥∥C(mk)
j

∥∥∥
∞
≤ K − 1

K + 1

1

2

∥∥∥B(mk)
j

∥∥∥
F
.

Taking the limit in both sides we get that A∗j ∈ Cθ∗j , where
θ∗j = angle(B∗j). Denote θ∗ = (..., θ∗j , ...) and we get that
Φ∗ ∈ Cθ∗ . Note also that up to integer factor of 2π we have
that θ(mk)

j → θ∗j , and therefore (with the correct 2π additions)

θ(mk) → θ∗, where we denote θ(mk) = (..., θ
(mk)
j , ...).

Part (iv): Next we show that the limit mapping, Φ∗ is a criti-
cal point of G over the limit set Cθ∗ . For this we will need to
compare elements in the subsequence, Φ(mk),Φ(mk+1), ... with
their subsequent elements Φ(mk+1),Φ(mk+1+1), ... For arbitrary
Φ′k ∈ C

θ(mk) ,

Eδ(Φ
(mk+1)) ≤ Eδ(Φ(mk+1))

= G
(
Φ(mk+1),Φ(mk+1)

)
≤ G

(
Φ(mk),Φ(mk+1)

)
≤ G

(
Φ(mk),Φ′k

)
.

Let Φ′ ∈ Cθ∗ be arbitrary. Since θ(mk) → θ∗ we can choose Φ′k ∈
C
θ(mk) such that Φ′k → Φ′. Now passing to the limit in the above

inequality we get that for all Φ′ ∈ Cθ∗ ,

G (Φ∗,Φ∗) = Eδ(Φ
∗) ≤ G (Φ∗,Φ′) . (27)

The gradients of Eδ(Φ), and G(Φ∗,Φ) (as a function of the sec-
ond variable again) w.r.t. the unknowns Φ = (p̃1, p̃2, .., p̃N ) are:

∇p̃iEδ(Φ) = p (p̃i − qi)
(
‖p̃i − qi‖

2
+ δ
) p

2−1

(28)

∇p̃iG(Φ∗,Φ) = p (p̃i − qi)
(∥∥p̃∗i − qi

∥∥2
+ δ
) p

2−1

(29)

Hence∇p̃iEδ(Φ
∗) = ∇p̃iG(Φ∗,Φ∗).

Eq. (27) implies that Φ∗ is a global minimum of G(Φ∗, ·) over
the set Cθ∗ . Since this function (G(Φ∗,Φ) as a function of Φ) is
convex and the set of constraints Φ ∈ Cθ∗ is convex, this implies in
particular that 〈

∇p̃iG(Φ∗,Φ∗),Φ−Φ∗
〉
≥ 0, (30)

for all Φ satisfying Φ ∈ Cθ∗ . Therefore, we have〈
∇p̃iEδ(Φ

∗),Φ−Φ∗
〉
≥ 0,

for all Φ satisfying Φ ∈ Cθ∗ , and so Φ∗ is a critical point of Eδ in
Cθ∗ .

LEMMA 3. Let h(r) = (r2 + δ)
p
2 , g(r, s) = h(r) +

p
2

(r2 + δ)
p
2−1

(s2 − r2). Then,

(1) g(r, s) is a convex quadratic function as a function of s.
(2) h(r) = g(r, r).
(3) g(s, s) ≤ g(r, s) for all r, s > 0.

PROOF. 1 and 2 are clear. We will prove 3. it is enough to show

(s2 + δ)
p
2 ≤ (r2 + δ)

p
2 +

p

2
(r2 + δ)

p
2−1(s2 − r2).

Let us multiply both sides by the positive number (r2 + δ)1− p
2 and

rearrange,

(r2 + δ)1− p
2 (s2 + δ)

p
2 ≤ (1− p

2
)(r2 + δ) +

p

2
(s2 + δ),

and this follows from the standard inequality of weighted arith-
metic versus geometric means.
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Fig. 5. Experiments with real images. Each set shows an image pair, SIFT matches used as input, and different methods for filtering the SIFT matches (BD
is the method described this paper). Correspondences are shown with disks of the same size and color, with the color and size respectively varying linearly
according to the horizontal and vertical position of points in the left image. On the right image in each pair, red lines show the deviation from ground truth
locations marked by a user (red lines are not shown for the SIFT image to avoid clutter). Black disks depict good matches that were missed.
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Fig. 6. Additional experiments with real images, see caption for Figure 5. Images taken from [Snavely et al. 2006; Strecha et al. 2008], used with the
permission of the original authors.
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Fig. 7. Additional experiments with real images, see caption for Figure 5. Images taken from [Lazebnik et al. 2004; 2005], used with the permission of the
original authors.
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