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Abstract 

Constraining 3D meshes to restricted classes is necessary in architectural and industrial design, but it can be 
very challenging to manipulate meshes while staying within these classes. Specifically, polyhedral meshes - those 
having planar faces - are very important, but also notoriously difficult to generate and manipulate efficiently. 

We describe an interactive method for computing, optimizing and editing polyhedral meshes. Efficiency is 
achieved thanks to a numerical procedure combining an alternating least-squares approach with the penalty 
method. This approach is generalized to manipulate other subsets of polyhedral meshes, as defined by a variety 
of other constraints. 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling. 

Keywords: planarization, polyhedral meshes, shape optimization. 

 

1. Introduction 

Working with flat materials such as glass or plywood is a 
typical scenario in architectural and industrial design. Such 
materials impose serious constraints on the creative free-
dom of a designer, as the space of these constructions is 
the space of polyhedral meshes, namely, meshes with pla-
nar faces, which is known to be very limiting. Beyond it 
being difficult to generate such meshes, it is even more 
difficult to manipulate them while staying within the class. 

Contemporary modeling methods for polyhedral meshes 
usually start with a freeform surface. Once the designer is 
satisfied with the shape, an elaborate meshing scheme  is 
employed to convert the freeform into a mesh with planar 
faces.  

In this paper, we provide an efficient solution to the fol-
lowing problem: given a general (non-polyhedral) 3D 
mesh, find the closest polyhedral mesh (with planar faces) 
that has the same or similar topology. A solution to this 
problem enables an interactive system in which the design-
er has a lot of freedom.  

In addition, we briefly discuss one special case of the 
main problem of this paper. This is the design of a polyhe-
dral surface such that its projection on a plane, sometimes 
called its picture, is fixed. We also show that our approach 
can be generalized to accommodate other constraints, and 
exemplify it with a new “as-similar-as-possible” planariza-
tion procedure. 

2. Related Work 

2.1 Mesh Optimization  

The issue of the planarity of 3D mesh faces has been treat-
ed before. In most cases, the goal was to mesh, or remesh, 
a given freeform surface so that the resulting mesh is poly-
hedral. Cohen-Steiner et. al. [CSAD04] describe a method 
in which the surface is partitioned into a user-defined 
number of almost flat regions. A plane, called the shape 
proxy of the region, is fit to each region and then used as a 
basis for a new, simplified mesh with almost planar faces. 
Later, Cutler and Whiting [CW07] added an iterative pro-
cess to guarantee that the resulting faces would be planar.  

In both of these systems, the user can control the number 
of faces and their density in the result but cannot dictate 
the mesh connectivity (its edge structure). While this is not 
necessarily a drawback, in some cases a regular mesh is 
desirable. Liu et al. [LPH*06] and Wang et al. [WLY*08] 
show how a surface may be meshed into a planar quad-
dominant (PQ) mesh and a planar hexagonal (P-Hex) 
mesh, respectively. The two algorithms are quite similar: 
An almost polyhedral mesh is first generated from the 
surface based on differential geometric entities (PQ mesh-
es are based on conjugate networks, and P-Hex meshes on 
the Dupin indicatrix). A second step involves non-linear 
optimization, where the vertices of the mesh are reposi-
tioned to make the faces planar. The latter step seems to 
dominate the runtime, and does not scale well with mesh 
size. We will describe an alternative optimization method 
which generates a solution in essentially linear time. 

Alexa and Wardetzky [AW11] show how to construct a 
Laplacian operator on non-triangular meshes. Their opera-
tor can be used, as in the triangular case, for smoothing a 
mesh by so-called Laplacian smoothing, which is equiva-
lent to mean-curvature flow. Such a flow gradually de-
creases the mean curvature at all points of the mesh, fol-
lowing the gradient of the mesh surface area, eventually 
leading to a mesh with minimal surface area. As a side 
effect of their construction, Alexa and Wardetzky were 
able to devise a related operator that measures the planarity 
of faces. With this new operator, they obtain a planarizing 
flow, that is, a geometric flow that flattens faces. This flow, 
however, still boils down to iteration of a slow non-linear 
optimization problem. 

Another approach that can be applied only to quad 
meshes is described by Hoffmann [Hof11], who shows that 
a single quad can be deformed without changing anything 
but its neighbors and without violating the planarity con-
straints. Unfortunately, this does not generalize to a meth-
od to deform a complete quad mesh. 

In parallel to our work, Bouaziz et al. [BDS*12] recently 
presented a general framework for projecting meshes on a 
set of constraints, e.g. having planar faces. Their frame-
work is similar to the one presented in Section 6.2 of this 
paper, and their solver is also similar to ours.  



 

 

2.2 Interactivity 

All the methods mentioned in the previous section cannot 
be used in an interactive, edit-and-observe modeling sce-
nario, due to their lengthy runtimes. A different approach 
that allows interactive editing was presented by Yang et al. 
[YYPM11], who treat the space of polyhedral meshes with 
given topology as a manifold embedded in a high dimen-
sional Euclidean space. Given a polyhedral mesh - a point 
on this manifold - we wish to explore its neighborhood, 
hence the term “shape space exploration”. Naturally, exact 
computation of the neighborhood will be difficult, so an 
osculant to the manifold at the point, which approximates 
the neighborhood and is simpler to traverse, is constructed 
instead. Sadly, this approximation is too crude to allow 
straying too far from the original polyhedral mesh without 
violating the planarity constraints. To rectify this, succes-
sive projections to the manifold must be made. The authors 
suggest using the same method as Liu et al. [LPH*06] 
which, again, is very time-consuming. 

3. Contributions 

Our main contributions are: 

1. An extremely simple, essentially linear-time optimi-
zation algorithm to generate a polyhedral mesh based 
on a given control mesh. 

2. A novel view of graph liftings for architectural de-
sign. 

3. A simple approach to accommodate a variety of other 
constraints. 

4. Mesh Planarization 

4.1 Problem Statement 

Let ܲ ൌ ሼ݌௜ሽ௜ୀଵ
ேೇ  be the geometry of a set of vertices of a 

given control mesh and ܳ ൌ ሼݍ௜ሽ௜ୀଵ
ேೇ  the geometry of the 

same set of vertices of a solution mesh (to be found). Let 

ܨ ൌ ൛ ௝݂ൟ௜ୀଵ
ேಷ

 be the set of faces of the control mesh, where 

each face is given as an ordered (oriented) list of vertices. 
Since the topology of the control and solution meshes is 
identical, so are their face sets. We write ݌௜ א ௝݂ if the 

vertex ݌௜ is incident to ௝݂. Abusing notation slightly, we 

will also write ௝݂ א -௜ to state the same in reverse. In addi݌

tion, we define the set of corners ܥ of the mesh as the set 
of indices of incident vertex-face pairs in the mesh. In 
other words, ሺ݅, ݆ሻ א ௜݌ if ܥ א ௝݂ (or ௝݂ א  .(௜݌

A very general way of describing the optimization prob-
lem is as follows: 

min
Q

,ሺܲݐݏ݅݀ ܳሻ ൅ ௥௘௚ሺܳሻܧߣ

s.t. ݍ ห ݍ൛  ݆׊ א ௝݂ൟ are co-planar
 (1) 

where ݀݅ݐݏ is some distance function between the mesh 
surfaces defined by ܲ and ܳ, and ܧ௥௘௚ is a regularization 
term defined on the result. For the sake of clarity, we will 
limit our discussion to a point-to-point Euclidean distance, 
and drop the regularization term for now. 

The planarity constraint on each face can be expressed in 
terms of the vertex geometry of the face alone. For exam-
ple, the volume of a tetrahedron defined by four vertices of 
a quad is zero iff the vertices are coplanar, leading to a 

trilinear constraint on the coordinates of the four vertices. 
In the general case of a face containing ݒ ൐ 4 vertices, co-
planarity of the face vertices is obtained iff  

det ሺ்ܳܳሻ ൌ 0 (2) 

where ܳ is the ݒ4  matrix of the vertex geometry in ho-
mogeneous coordinates. This is a polynomial constraint of 
order six, which is more difficult to work with. 

A key observation is that by adding the normals to the 
planes of the faces as variables, the optimization problem 
can be cast as a least squares problem with only bilinear 
and norm constraints. Specifically, we characterize each 
face ௝݂ by its unit normal vector ௝݊ and the distance ௝݀ of 

its plane from the origin, forming the sets ܰ and ܦ of 
normals and distances respectively. We require that for 
each face ௝݂ and for each vertex ݍ௜ א ௝݂, ݍ௜ will lie on the 

plane defined by ሺ݊௝, ௝݀ሻ. Problem (1) (without the regu-
larization term) may then be stated as 

min
௤೔אொ
௡ೕאே
ௗೕא஽

෍ԡ݌௜ െ ௜ԡଶݍ
ேೇ

௜ୀଵ

s.t. ௝݊ · ௜ݍ ൅ ௝݀ ൌ 0, ,ሺ݅׊ ݆ሻ א ܥ

ฮ ௝݊ฮ
ଶ
ൌ 1

 (3) 

We will refer to these constraints simply as distance 
from plane constraints (DFP). We mention here that Deng 
et al. [DPW11] also proposed a similar formulation of the 
problem for designing planar webs. We improve on this by 
showing, in the next section, how to take advantage of the 
form (3) of the problem to devise a very efficient solver. 

4.2 An Alternating Solver  

While problem (3) may be solved using a generic solver, it 
does not scale well, as do other non-linear problems. Most 
of the commercial solvers we tried, when confronted with 
this problem, took a long time to handle a mesh of more 
than few hundred vertices. Implementing a dedicated solv-
er requires considerable expertise. We now show how to 
circumvent this complexity, using only the simplest tools 
of linear algebra. 

First we apply the quadratic penalty method [NW99, Ch. 
17.1], rewriting problem (3) as 

min
௤೔אொ
௡ೕאே
ௗೕא஽

௜݌෍ԡߤ െ ௜ԡଶݍ
ேೇ

௜ୀଵ

൅ ሺ1 െ ሻߤ ෍ ൫ ௝݊ · ௜ݍ ൅ ௝݀൯
ଶ

ሺ௜,௝ሻא஼

s.t. ฮ ௝݊ฮ
ଶ
ൌ 1

ሺ4ሻ 

where ߤ is the penalty coefficient. Starting with ߤ ൌ 1 and 
an initial guess, the method requires successively solving 
(4), where in each iteration ߤ is gradually reduced, and the 
previous solution is used as a new initial guess. This itera-
tion is guaranteed to converge to a local minimum of (3) 
under very mild conditions.  



 

 

Problem (4) still cannot be solved by simple means. But 
consider the following: if the ௝݊’s are fixed, then (4) be-
comes quadratic and may solved by a (sparse) global linear 
system.  

Although the global linear system can be solved very 
quickly, we can further simplify (4): if the ௝݊’s and the 

௝݀’s are fixed, then the problem becomes completely sepa-
rable in the remaining variables. That is, we can find each 
 ௜ as the onlyݍ ௜ by solving a small local problem withݍ
variable. Namely, 

min
௤೔

቎ߤԡ݌௜ െ ௜ԡଶݍ ൅ ሺ1 െ ሻߤ ෍ ൫ ௝݊ · ௜ݍ ൅ ௝݀൯
ଶ

ሺ௜,௝ሻא஼

቏ 
(5) 

 

The same happens if we fix the ݍ௜’s. In that case finding 
each pair ሺ݊௝, ௝݀ሻ amounts to solving the local problem 

min
௡ೕ,ௗೕ

෍ ൫ ௝݊ · ௜ݍ ൅ ௝݀൯
ଶ

ሺ௜,௝ሻא஼

s.t. ฮ ௝݊ฮ
ଶ
ൌ 1

 (6) 

Problem (5) is a simple least squares problem in qi and 
can be solved using the standard pseudo-inverse technique. 
It is exactly the problem of finding a point qi which is as 
close as possible (in the Euclidean norm) to a set of given 
planes. Similarly, problem (6) is exactly that of fitting a 
plane ሺ ௝݊, ௝݀ሻ to a set of points, and can be solved using 
eigen-decomposition. The details can be found in Algo-
rithm Planarize. 

Thus we alternate between fixing one set of variables 
and solving for the other set repeatedly, until convergence. 
Following [SA07] and [LZX*08], we call the first ap-

proach, involving a global linear system for ൫ݍ௜, ௝݀൯ and a 

local system for ௝݊ a “local/global” (L/G) scheme. The 

second approach, involving a local system for ݍ௜ and a 
local system for ሺ ௝݊, ௝݀ሻ is called “local/local” (L/L). We 
will refer to both of them as the local schemes. The solu-
tion to (4) using a generic non-linear solver will be called 
simply the “global” solution. 

Since both the local schemes are not strictly of the alter-
nating least squares type, we cannot prove that they will 
achieve a local minimum of (4), (although it is easy to see 
that they do converge). While this is necessary for the 
penalty method to work, our experiments show that in 
well-behaved cases, both solvers achieve the same minima. 
Furthermore, even in difficult situations, the final energy is 
always zero, meaning that the planarity constraints are 
satisfied. 

Regularization. Starting from the general problem in (1), 
many additional regularization terms can be added. How-
ever, to benefit from the local approaches, the term must 
have a local form which can be incorporated to each prob-
lem in the alternating steps. The most obvious regulariza-
tion term that comes to mind is Laplacian smoothing, 
where the distance between a vertex and the average of its 
neighbors is minimized. As a global energy, it is expressed 
by 

,ଵݍ௟௔௣,௤ሺܧ … , ௡ሻݍ ൌ෍ቌݍ௜ െ
1
ܽ

෍ ௞ݍ௜,௞ݓ
௞א௡௘௜௚௛ሺ௤೔ሻ

ቍ

ଶ
ே

௜ୀଵ

 (7) 

where ݄݊݁݅݃ሺݍሻ is a list of indices of vertex-neighbors of 
ܽ and ݍ ൌ ∑ ௡௘௜௚௛ሺ௤೔ሻא௜,௞௞ݓ . This energy can be separat-
ed, as required by our method, into an energy term for each 
vertex 

௜ܧ
௟௔௣,௤ሺݍ௜ሻ ൌ ቌݍ௜ െ

1
ܽ

෍ ௞ݍ௜,௞ݓ
௞א௡௘௜௚௛ሺ௤೔ሻ

ቍ

ଶ

 

 

(8) 

A similar energy is occasionally used for the normals of 
the faces. That is, the normals of faces are smoothed as 
well. Locally, this can be written as 

௝ܧ
௟௔௣,௡൫ ௝݊൯ ൌ ቌ ௝݊ െ

1
ܾ

෍ ௝,௞݊௞ݓ
௞א௡௘௜௚௛ሺ௙ೕሻ

ቍ

ଶ

 

where ݄݊݁݅݃ሺ݂ሻ is a list of indices of faces-neighbors of 
݂ and ܾ ൌ ∑ ே೑ೕא௝,௞௞ݓ

. Both of these energies are quad-

ratic, and adding them to the objective functions in (7) and 
(8) does not make the algorithm any more complicated. 

Several other similar regularization terms have been pro-
posed in the literature, such as minimizing the change in 
the Laplacian [ZSW11]. We will discuss more complex 
terms in Section 6, once we establish a generalization of 
the alternating schemes. 

 

5. Evaluation 

Implementation Details. The global solution to (3) was 
computed using the KNITRO [BNW06] general-purpose 

ߤ ൌ  ଴ߤ

Algorithm Planarize (local/local) 

Compute ܳ (ܲ,ܰ, ,ܦ ,ܨ ,଴ߤ ,ݎ ݇ሻ 

ܳ ൌ ܲ  

do ݇ times 

for ݆ ൌ 1 to ிܰ  

   തܳ ൌ Rows of ܳ corresponding to vertices of ௝݂ 

ܯ    ൌ Average of columns of ܳ 

   ܳ௖തതത ൌ ܳ െܯ 

   ௝ܰ ൌ Eigenvector with smallest eigenvalue of ܳ௖തതത
்
ܳ௖തതത 

   ௝݀ ൌ -்ܯ
௝ܰ 

 end 

 for ݅ ൌ 1 to ௏ܰ 

   ഥܰ ൌ Rows of ܰ corresponding to faces of ݍ௝ 

ഥܦ    ൌ Entries of ܦ corresponding to faces of  ݍ௝ 

ܣ    ൌ ܫߤ ൅ ሺ1 െ ሻߤ ഥ்ܰ ഥܰ 

   ܾ ൌ ௜݌ߤ െ ሺ1 െ ഥ்ܦሻߤ ഥܰ 

   Solve ݍܣ௜ ൌ ܾ for ݍ௜  

  end 

ߤ   ൌ  ߤݎ

End 



 

 

solver, which uses Sequential Quadratic Programming 
(SQP). This is the fastest generic solver we could find 
(also supported by the Benchmarks for Optimization Soft-
ware: http://plato.asu.edu/bench.html). We provided ana-
lytic gradients, but the Hessians were computed numerical-
ly, based on their sparsity pattern, which is faster than 
evaluating them analytically. Initial planes were found 
using the second loop of Algorithm Planarize.  

The local schemes were implemented in C++. We used 
Eigen v3 [GJ10] for matrix computation and [OMP] for 
parallelizing the two loops in a multi-core environment. 
Since both loops do not require any synchronization, using 
OpenMP to parallelize them is extremely simple: we had 
only to add the line. 

#pragma omp parallel for schedule (dynamic,1)  

before each loop. The resulting speedup was 3-5 on a 4-
core Intel i7 CPU with 4GB RAM. There is still a lot more 
room for improvement, since we did not optimize calls to 
Eigen, and have observed many redundant memory alloca-
tions.  

Planarity measure. All of the constraints mentioned in 
Section 4.1 force planarity in different ways such that a 
planar face will always measure exactly zero, but the be-
havior of the different measures on non-planar faces is 
considerably different. For a fair comparison between the 
methods, we always measure non-planarity of a computed 
face as the smallest eigenvalue obtained by principle com-
ponent analysis (PCA) of the face vertex geometry. 

Comparison to other planarity constraints. As men-
tioned in Section 4.1, there are a number of ways to meas-
ure the planarity of faces. In addition, Liu et al. [LPH*06] 
measure the planarity of a quad by the sum of its angles, 
which is 2π iff the quad is planar. Wang et al. [WLY*08] 
measure the planarity of a hexagon by measuring the pla-
narity of the quads defined by each four consecutive verti-
ces, which, in turn, is measured by the volume of the tetra-
hedron spanned by those four vertices. These two methods 
are easily generalized to any sized polygon.  

These planarity constraints, as well as the one described 
in (2), and the DFP constraints we use in (3), are equiva-
lent in the sense that they must define the same feasible 
region in space, thus the same global minimum. However, 
they differ in practice when an iterative solver is used. 
Each set of constraints define a different gradient descent 
path which may or may not end up at a feasible point and 
the number of steps needed to reach a feasible point varies. 
Fig. 7 and 8 demonstrates the convergence of a generic 
optimizer using the various sets of constraints with a point-
to-point distance as the objective. Using DFP constraints, 
the optimizer always reaches a feasible point, and in the 
least number of steps. Using other constraints causes the 
optimizer to get stuck, in many cases, away from the feasi-
ble domain. Thus we conclude that even if a generic global 
solver is to be used, it is best to apply it to the problem as 
described using the DFP constraints (3). 

The other aspect of the optimization that should be eval-
uated is the final energy that was achieved. This is mean-
ingful only if two solutions have the same measure of pla-
narity. Therefore, the meshes we show in Fig. 7 and 8 are 
not the final results of the optimization, but intermediate 

results acquired just after the mesh achieves a given level 
of planarity (as measured using PCA).  

Global vs. L/G vs. L/L. Using DFP constraints improves 
the convergence properties and the results of the optimiza-
tion, but the major benefit in using them is the option of 
using the local schemes. As shown earlier, these approach-
es are very simple to implement, and their runtimes are 
several orders of magnitudes smaller than the alternatives. 
For example, it took 5 and 12 seconds to optimize Torus1 
and Torus2 from Fig. 7 using a global optimizer and only 
70 and 144 milliseconds to optimize using the L/L scheme. 
Hence, the only concern regarding whether to use them or 
not is related to the final result. Their behavior, or more 
precisely, the behavior of the penalty method, is directly 
related to the rate of change of ߤ. It has to be reduced 
“slowly enough” for the local schemes to converge to the 
same minimum as the global solver. In our tests, “slowly 
enough” was determined experimentally, although a more 
deterministic method exists (see [NW99, Ch. 17.1]). Our 
experiments show that setting ݎ ൌ 0.9 in the L/L case and 
ݎ ൌ 0.7 in the L/G produces good results after 100 and 30 
iterations respectively. 

The runtime of Algorithm Planarize depends mostly on 
௏ܰ, ிܰ and the number of iterations ݇, and the dependence 

is linear. We have observed that for ߤ ൏ 10ିସ, the con-
straints are satisfied with a tolerance less than 10ି଺, which 
is the default tolerance in most commercial optimizers. 
Therefore, ݇ depends only on ߤ଴ and ݎ. We have also ob-
served that the results are not improved by setting both ݐ଴ 
and ݎ to a value larger than 0.9. Hence ݐ଴ and ݎ can be 
fixed. We therefore conclude that the algorithm essentially 
depends linearly on ௏ܰ+ ிܰ.  The times measured to run 
100 L/L iterations on the meshes of Fig. 7 and 8 are 
graphed in Fig. 2, where the linear behavior is evident.  

Analysis of the time complexity for the L/G case is simi-
lar, only in this case a sparse linear system must be solved 
at each iteration. While theoretically this requires quadratic 
time, in practice we see from Table 1 and Fig. 2 the time is 
linear in the number of faces. This is perhaps due to the 
specific sparsity pattern of this particular linear system. 

Model (fig) 
Fac-
es 

Vertices 
L/G 
Time 

L/L 
Time 

Level 1 (2a) 12 20 16 1 
Level 2 (2b) 48 64 44 4 
Level 3 (2c) 192 224 64 16 
Level 4 (2d) 768 832 238 42 
Quadmesh 1 1027 1154 310 50 
Torus1 1080 2160 618 70 
Quad mesh 2 1579 1791 536 76 
Torus2 1944 3888 1068 144 
Level5 3072 3200 1126 176 
Table 1: Runtime (msec) of 30 L/G iterations and 100 
L/L iterations 
 

 

Figure 1: Plot 
of Table 1. 



 

 

Interactive Tweaking. It has been noted before that it is 
sometime preferable to decompose the point-to-point Eu-
clidean norm to a distance from the surface normal and 
from the tangent plane (also known as point-to-plane). If 
݊௤ is the unit normal at the vertex ݍ, the (squared) distance 
of a point ݍ′ from the tangent plane at ݍ is simply: 

,ݍ௧൫ܦ ൯′ݍ ൌ ቀ൫ݍ െ ൯′ݍ · ݊௤ቁ
ଶ
 

and the (squared) distance from the normal is:  

,ݍ௡൫ܦ ൯′ݍ ൌ ฮ൫ݍ െ ൯′ݍ ൈ ݊௤ฮ
ଶ
 

which are still quadratic if either ݍ or ݊ are fixed. In our 
implementation, we replaced the Euclidean norm with a 
combination of ܦ௧ and ܦ௡. An example is shown in Fig. 2 
– both the global solution and the local solution with Eu-
clidean distance generate artifacts. In contrast, penalizing 
only distance from the tangent plane produces nice results. 
As shown in the accompanying video, reaching the best 
solution is possible by interactive tweaking of the parame-
ters of the problem. 

 Edit-and-Observe. One of the main difficulties of model-
ing with freeforms via control points is that it is hard to 
predict the effect of moving a control point, especially for 
a novice. This is the case whether using an interpolation 
scheme, or to a greater extent, using an approximation 
scheme. The designer must constantly reposition the verti-
ces of the control mesh, change their weights, change their 
continuity and so on. This process is feasible only because 
of the immediate result provided. The same is true when 
working with polyhedral meshes; the planarity constraint 

causes them to be somewhat unpredictable. So a real-time 
response is critical, and this is feasible due to efficiency of 
the local schemes. 

 We expect a typical design session would start from a 
non-polyhedral mesh constructed in a generic modeling 
system. Once the designer is satisfied with the general 
shape of the model, the design mode will be changed to 
polyhedral mode, by meshing or otherwise. The model 
would then become a control (wireframe) mesh, and the 
resulting polyhedral solution would be seen simultaneous-
ly. Sometimes a few artifacts may occur in the result, 
which can be fixed manually by the user or automatically. 
Figure 3 shows a mesh before and after this cleanup pro-
cess. The solution has a few short edges that seem redun-
dant. Using an automatic edge collapse method, all short 
edges are removed, and the optimization process runs 
again. The result is a clean polyhedral mesh. If the result is 
still not satisfying, the control mesh can be completely 
remeshed using one of the methods mentioned in this pa-
per, and then optimized.  

In the accompanying video, we show a very simple mesh 
modeling program we have developed to deform a control 
mesh and display the polyhedral result. The video shows 
that using our local solver, real-time deformation of poly-
hedral meshes is indeed possible. 

 Currently, we can use our software to locally reposition 
vertices, and set the optimization parameters interactively. 
Using “soft selection” we can move a single vertex with a 
variable size of its neighborhood. If the original control 
mesh generated a good solution, then small deformations 
will typically also generate good solutions. Our intention is 
to integrate our solver into other deformation schemes, 

Figure 3: Using an interactive system, the designer can 
spot artifacts (circled), remove them, and immediately see 
the result. 

 

Figure 2: Decomposing the Euclidean norm into 
components may be preferable. Minimizing only the point-
to-plane distance produces a solution closer to the control 
mesh (of  901 vertices and 880 quads). Note the circled 
region, where the less planar faces reside, and which 
causes most of artifacts in the planarized results. It took 
38 msec to run 100 iterations with our L/L solver and 4 
sec to solve using the global solver. 

Control (non-planar) Global Euclidean 

Local/local point-to-point Local/local point-to-plane 

Control 

Solution 

After 
cleanup 



 

 

such as skeletal or cage based deformations, and into 
meshing schemes such as those discussed in this paper. 

6. Additional Results 

6.1 Optimal Lifting 

We now discuss a special case of the main problem pre-
sented in this paper which turns out to be related to the 
classic “lifting” problem of planar graphs. This could have 
architectural applications in its own right. A complete 
exposition on this problem and its solution can be found in 
[Ric96], and it can be stated as follows: Given a 3-
connected planar graph ܩ embedded in the 
plane, can we assign heights, or lift each 
vertex, such that each face remains pla-
nar? This is not always possible, in a 
non-trivial way, and a classical exam-
ple is the so-called Schoenhart graph 
(see embedded image on right).  

A solution to the lifting problem, if it exists, can be com-
puted by following the same ideas as presented in Section 
5: add the normals of the faces to the problem as variables 
and get (3) again, only with less variables. Since the ݔ and 
-ݖ coordinates of each point are known, if we fix the ݕ
coordinates of the normals (say to 1) and then safely ignore 
their unit length constraints, we would be left with nothing 
more than a linear least squares problem with linear con-
straints, whose global minimum may be obtained by solv-
ing a linear system. For the sake of completeness, we de-
tail here the solution to this problem.  

Denote by ̂ݖ௜ the ݖ-coordinates of the vertices to be 
found, ௝݊

௫ and   ௝݊
௬ the ݔ and ݕ components of the normal to 

face ௝݂ (the ݖ component is set to 1) and ௝݀ as before. De-
fine the variable vector ݓ as a ൫ ௩ܰ ൅ 3 ௙ܰ൯ ൈ 1 column 
vector obtained by concatenating ̂ݖ௜, ௝݊

௫, ௝݊
௬ and ௝݀. The 

energy function is 

෍ሺݖ௜ െ ௜ሻଶݖ̂
ேೇ

௜ୀଵ

ൌ ԡݓܣ െ ܾԡଶ, 

ܣ   ൌ ൬
ேೇܫ ૙
૙ ૙

൰ , ܾ ൌ   ቀ
௜ݖ
૙ቁ 

where ܫேೇ is the ௏ܰ ൈ ௏ܰ identity matrix, and ૙ is a vector 
or a matrix of appropriate size. For each corner ሺ݅, ݆ሻ we 
have the linear constraint ̂ݖ௜ ൅ ௜ݔ ௝݊

௫ ൅ ௜ݕ ௝݊
௬ ൅ ௝݀ ൌ 0. Let 

ܿ be the ܤ ൈ ൫ ௩ܰ ൅ 3 ௙ܰ൯ matrix (ܿ is the number of cor-
ners) and ݀ the ܿ ൈ 1 vector such that ݓܤ ൌ 0 expresses 
all of these equations. Then the optimization can be written 
as 

min
௪
ԡݓܣ െ ܾԡଶ 

.ݏ ݓܤ  .ݐ ൌ 0 

The solution to this problem is known to be 

ቀ
ݓ
ቁߣ ൌ ቀܣ

ܣ் ்ܤ

ܤ 0
ቁ
ିଵ

ቀܣ
்ܾ
݀
ቁ 

where ߣ are Lagrange multipliers used to find the solution. 
Since we are ultimately interested only in ̂ݖ, we can simply 
take the first ௏ܰ elements of the solution. 

We provide a few examples of such liftings in Fig. 4. It 
is important to remember how limited liftings are when 
designing them. Even if the embedding is liftable, the 

space of liftings can have very low dimension. For exam-
ple, it is easy to show that the space of liftings of a 3-
regular graph (having any planar geometry) is only 4-
dimensional. 

We can analyze this space of liftings from an algebraic 
point of view: it is represented by the nullspace of the con-
straint matrix ܤ. Any basis of ݈݈݊ݑሺܤሻ can be used to 
construct all the valid liftings. This suggests a different 
modeling scheme, where the designer is given a small set 
of “basis functions” from which she can create a lifting. 
However, not every spanning subset is geometrically 
meaningful. In what follows, we briefly describe three 
choices of such sets, where a function is associated with 
each vertex. Results are shown in Fig. 5. 

Fundamental Liftings. We construct one function per 
vertex as follows. For each vertex ݌௜ in the mesh, we de-
fine target heights ݖ௝ ൌ  ௜ is then the݌ ௜௝. The function forߜ

optimal lifting for these target values of ݖ௜, which we call 
the fundamental lifting of vertex ݅. 

Sparse Liftings. While the aim of the fundamental lifting 
is to move one vertex while the rest stay in place as much 
as possible, we can try something a little different: Move 
several vertices together, while the rest do not move at all, 
forming sparse liftings. This corresponds to sparse vectors 
of ݈݈݊ݑሺܤሻ. Generally, finding such vectors is an NP-hard 
problem, but the local nature of planar graphs allows us to 
find sparse liftings for small neighborhoods and then stitch 
them to form sparse liftings for the entire graph.  

EigenLiftings. Both previous approaches give the designer 
a tool to fine-tune the lifting, using delta-like functions. To 
add globally smooth liftings to the set, we resort to the 
eigenvectors of the combinatorial graph Laplacian, ܮ. Of 
course, the eigenvectors must be constrained to the space 
of liftings, and these can be found using the constrained 
Rayleigh quotient: 

max
୵

ݓܮ்ݓ
ݓ்ݓ

 

s. t.  ݓܤ ൌ 0 

The constrained eigenvectors themselves are given 
[GvMG89] by the eigenvectors of ܲܲܮ, where 

Figure 4: Optimal liftings approximating non-polyhedral 
control meshes with the same topology and (x,y) projec-
tion. 

Optimal lifting Control 



 

 

ܲ ൌ ܫ െ  ܤሻିଵ்ܤܤሺ்ܤ

6.2 Other Constraints 

We now show how to generalize the approach presented in 
Section 5. We assume a scenario similar to that of Section 
4, where each face ௝݂ comes with a vector of parameters ௝ܽ 
(e.g. face normal). We consider the following problem: 

min
௤೔אொ

  ෍ܦሺݍ௜, ܵሻ

ேೡ

௜

 

s. t.   ܨ൫ݍ௜, ௝ܽ൯ ൌ 0, ,ሺ݅׊ ݆ሻ א  ܥ
൫ܩ ௝ܽ൯ ൌ  ݆׊   ,0

(7) 

where ܦ is a distance measure. Namely, we wish to mini-
mize the sum of distances of the ݍ௜’s from a surface ܵ, 
while satisfying a corner constraint ܨ and a face constraint 
-For example, the planarization problem imposes a cor .ܩ
ner constraint that each vertex be in the planes of its faces, 
and a face constraint that each normal has unit norm. ܨ and  
 .can also be an entire vector of constraints ܩ

We can write (7) in the penalty form: 

min
௤೔אொ

,௜ݍሺܦ෍ߤ ܵሻ

ேೡ

௜

൅ ሺ1 െ ሻߤ ෍ ,௜ݍଶ൫ܨ ௝ܽ൯
ሺ௜,௝ሻא஼

 

s. t.   ܩ൫ ௝ܽ൯ ൌ  ݆׊   ,0

where the squaring of ܨ can be dropped if ܨ is known to 
be positive. Fixing the ݍ௜’s, we are left with the separate 
problems 

min
௔ೕ

,௜ݍଶ൫ܨ ௝ܽ൯ ൌ 0 

.ݏ ൫ܩ  .ݐ ௝ܽ൯ ൌ  ݆׊   ,0

Even if these problems are still complicated, they are 
much smaller and can be solved in parallel. To get the 
alternating version of the problem, we must fix some of the 
face parameters. If we fix all of them, then the problem is a 
local/local type. Otherwise, it is a local/global type. Decid-
ing which parameters to fix is problem-dependent; We can 
fix as many parameters as we want, as long as the lo-
cal/global solution approximates the global solution for 
each ߤ. Although hard constraints become soft in each 
iteration using the penalty method, they are effectively 
hard. We may choose however, to explicitly use soft con-
straints, making them work essentially as regularizers. 

As an example, we construct what may be called an As-
Rigid-As-Possible (ARAP) or As-Similar-As-Possible 
(ASAP) planarization. This means that we aim for each 
solution face to be a rigid or similar copy of the corre-
sponding control face, as much as possible. To this end, we 
define for each face ௝݂ the normal ௝݊ and distance ௝݀ for 
planarization as usual. In addition, we define a rig-
id/similarity transformation ܣ௙ and a translation vector ௙ܶ. 
Then problem (7) may be written first with hard con-
straints as: 

min ෍ԡ݌௜ െ ௜ԡଶݍ
ேೇ

௜ୀଵ
s.t. ࢚࢟࢏࢘ࢇ࢔ࢇ࢒ࡼ

௝݊ · ௜ݍ ൅ ௝݀ ൌ 0, ,ሺ݅׊ ݆ሻ א ܥ

ฮ ௝݊ฮ
ଶ
ൌ 1

࢚࢟࢏࢘ࢇ࢒࢏࢓࢏ࡿ/࢚࢟࢏ࢊ࢏ࢍ࢏ࡾ

௜݌௝ܣ ൅ ௝ܶ ൌ ௜ݍ
௝ܣ
௝ܣ் ൌ ܫݏ

  

Figure 5: Examples of (top to bottom) fundamental, sparse and eigen-liftings, for the three planar graphs in the top row. 



 

 

where ݏ ൌ 1 in the case of rigidity. Of course, the con-
straints are inconsistent in general, hence we convert the 
rigidity/similarity from a hard constraint to a regularization 
term, and write it in penalty form, resulting in 

min ߤ ቌ෍ԡ݌௜ െ ௜ԡଶݍ
ேೇ

௜ୀଵ

൅ ߣ ෍ ԡܣ௝݌௜ ൅ ௝ܶ െ ௜ԡଶݍ

ሺ௜,௝ሻא஼

ቍ ൅

                       ൅ሺ1 െ ሻߤ ෍ ൫ ௝݊ · ௜ݍ ൅ ௝݀൯
ଶ

ሺ௜,௝ሻא஼

s.t. ฮ ௝݊ฮ
ଶ
ൌ 1

௝ܣ
௝ܣ் ൌ ܫݏ

 

Deriving the local/global form is now simple; By fixing ݍ௜, 
the rest of the variables can be found locally as follows: 
each ( ௝݊ , ௝݀ሻ may be computed using the same method as 

in Section 5 and each ሺܣ௝, ௝ܶሻ may be computed via the 
local problem: 

min ԡܣ௝݌௜ ൅ ௝ܶ െ ௜ԡଶݍ

s.t. ௝ܣ
௝ܣ் ൌ ܫݏ

 

which is nothing but the orthogonal Procrustes problem, 
the solution of which can be found using Singular Value 
Decomposition (SVD)  [ZG07]. For the global step, we fix 
only the ௝݊ and ܣ௝ and are left with a constrained linear 
least squares problem for the rest of the variables.  

 As before, an L/L scheme is also possible. However, our 
experiments show that for this problem, an L/L scheme 
does not perform well, and in fact, the results are very 
similar to those of Algorithm Planarize (meaning that the 
similarity/rigidity constraints are not satisfied well). On the 
other hand, the L/G scheme with ASAP/ARAP regulariza-
tion reduce the visual artifacts considerably for the same 
measure of planarity, compared to simple planarization. 
We compare the results of applying two local schemes to 

the mesh in Fig. 6: The L/L scheme, with point-to-point 
distance and the L/G scheme with ASAP regularization 
without a proximity term. The results show that in prob-
lematic areas, the L/L scheme degenerates the quads into 
triangles, while ASAP regularization preserves the quads, 
sometimes making them smaller. This better preserves the 
structure of quad meshes created as conjugate line net-
works, which may be damaged otherwise. 

As a final note, we mention two useful constraints that 
can be formulated to fit our approach. First, circularity 
[LPH*06], where the vertices of each face lie on a circle, 
can be obtained by adding a center and a radius as addi-
tional parameters for each face. Second, we can constrain 
quad faces to be parallelograms using two additional span-
ning vectors per face.  

7. Conclusions and Discussion 

We have presented a methodology for efficiently compu-
ting and manipulating polyhedral meshes. It removes the 
serious computational bottleneck of finding an approximat-
ing polyhedral mesh to a given reference mesh, while in-
corporating a variety of constraints. Not only is it more 
efficient, but it is significantly easier to implement than a 
dedicated optimizer. Our experiments show that for inputs 
which are close to polyhedral, such as those generated by 
many meshing methods, all optimization methods (ours 
and others) reach very similar results. Hence, these mesh-
ing schemes can only benefit by incorporating our much 
faster optimization procedure. 

Preserving the general “look” of a given mesh, e.g. conju-
gate lines, when converting it to polyhedral form, is quite 
important in practical applications. We have shown that 
this may be achieved somewhat when imposing an “As-
Similar-As-Possible” constraint on the solution. We won-
der if there are other ways to achieve a similar result, also 
amenable to our techniques. 

We would like to explore further the linear theory of opti-
mal liftings. Interesting questions are the dimension of the 

Figure 6: As-similar-as-possible planarization. The control mesh (left) is planarized by the regular L/L scheme (center) and 
the L/G scheme with ASAP regularization (right). ASAP results in much less distortion of the faces, as indicated by the value 
of  ݎ - the reduction in the non-planarity measure.  

Control 
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Local/Global with ASAP 

9 steps 

࢘ ൌ ૙. ૙ૡ

Local/Local 

50 steps 

࢘ ൌ ૙. ૚૜  



 

 

space of liftings as a function of the mesh structure and 
meaningful bases for this space. We would also like to 
explore the other linear spaces of polyhedral meshes. 
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Figure 7: Planarization results and convergence using a global algorithm with different types of constraints mentioned in 
this paper and the local schemes derived from DFP formulation. 



 

 

 

Figure 8: More planarization results and convergence using a global algorithm with different types of constraints men-
tioned in this paper and the local schemes derived from DFP formulation. These meshes were generated by applying the 
Catmull-Clark subdivision scheme to the top mesh. 
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