

Interactive Planarization and Optimization of 3D Meshes
Roi Poranne1 Elena Ovreiu2 Craig Gotsman1

1 Computer Science Department, Technion, Haifa, Israel

2 Université de Lyon, France

Abstract

Constraining 3D meshes to restricted classes is necessary in architectural and industrial design, but it can be
very challenging to manipulate meshes while staying within these classes. Specifically, polyhedral meshes - those
having planar faces - are very important, but also notoriously difficult to generate and manipulate efficiently.

We describe an interactive method for computing, optimizing and editing polyhedral meshes. Efficiency is
achieved thanks to a numerical procedure combining an alternating least-squares approach with the penalty
method. This approach is generalized to manipulate other subsets of polyhedral meshes, as defined by a variety
of other constraints.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling.

Keywords: planarization, polyhedral meshes, shape optimization.

1. Introduction

Working with flat materials such as glass or plywood is a
typical scenario in architectural and industrial design. Such
materials impose serious constraints on the creative free-
dom of a designer, as the space of these constructions is
the space of polyhedral meshes, namely, meshes with pla-
nar faces, which is known to be very limiting. Beyond it
being difficult to generate such meshes, it is even more
difficult to manipulate them while staying within the class.

Contemporary modeling methods for polyhedral meshes
usually start with a freeform surface. Once the designer is
satisfied with the shape, an elaborate meshing scheme is
employed to convert the freeform into a mesh with planar
faces.

In this paper, we provide an efficient solution to the fol-
lowing problem: given a general (non-polyhedral) 3D
mesh, find the closest polyhedral mesh (with planar faces)
that has the same or similar topology. A solution to this
problem enables an interactive system in which the design-
er has a lot of freedom.

In addition, we briefly discuss one special case of the
main problem of this paper. This is the design of a polyhe-
dral surface such that its projection on a plane, sometimes
called its picture, is fixed. We also show that our approach
can be generalized to accommodate other constraints, and
exemplify it with a new “as-similar-as-possible” planariza-
tion procedure.

2. Related Work

2.1 Mesh Optimization

The issue of the planarity of 3D mesh faces has been treat-
ed before. In most cases, the goal was to mesh, or remesh,
a given freeform surface so that the resulting mesh is poly-
hedral. Cohen-Steiner et. al. [CSAD04] describe a method
in which the surface is partitioned into a user-defined
number of almost flat regions. A plane, called the shape
proxy of the region, is fit to each region and then used as a
basis for a new, simplified mesh with almost planar faces.
Later, Cutler and Whiting [CW07] added an iterative pro-
cess to guarantee that the resulting faces would be planar.

In both of these systems, the user can control the number
of faces and their density in the result but cannot dictate
the mesh connectivity (its edge structure). While this is not
necessarily a drawback, in some cases a regular mesh is
desirable. Liu et al. [LPH*06] and Wang et al. [WLY*08]
show how a surface may be meshed into a planar quad-
dominant (PQ) mesh and a planar hexagonal (P-Hex)
mesh, respectively. The two algorithms are quite similar:
An almost polyhedral mesh is first generated from the
surface based on differential geometric entities (PQ mesh-
es are based on conjugate networks, and P-Hex meshes on
the Dupin indicatrix). A second step involves non-linear
optimization, where the vertices of the mesh are reposi-
tioned to make the faces planar. The latter step seems to
dominate the runtime, and does not scale well with mesh
size. We will describe an alternative optimization method
which generates a solution in essentially linear time.

Alexa and Wardetzky [AW11] show how to construct a
Laplacian operator on non-triangular meshes. Their opera-
tor can be used, as in the triangular case, for smoothing a
mesh by so-called Laplacian smoothing, which is equiva-
lent to mean-curvature flow. Such a flow gradually de-
creases the mean curvature at all points of the mesh, fol-
lowing the gradient of the mesh surface area, eventually
leading to a mesh with minimal surface area. As a side
effect of their construction, Alexa and Wardetzky were
able to devise a related operator that measures the planarity
of faces. With this new operator, they obtain a planarizing
flow, that is, a geometric flow that flattens faces. This flow,
however, still boils down to iteration of a slow non-linear
optimization problem.

Another approach that can be applied only to quad
meshes is described by Hoffmann [Hof11], who shows that
a single quad can be deformed without changing anything
but its neighbors and without violating the planarity con-
straints. Unfortunately, this does not generalize to a meth-
od to deform a complete quad mesh.

In parallel to our work, Bouaziz et al. [BDS*12] recently
presented a general framework for projecting meshes on a
set of constraints, e.g. having planar faces. Their frame-
work is similar to the one presented in Section 6.2 of this
paper, and their solver is also similar to ours.

2.2 Interactivity

All the methods mentioned in the previous section cannot
be used in an interactive, edit-and-observe modeling sce-
nario, due to their lengthy runtimes. A different approach
that allows interactive editing was presented by Yang et al.
[YYPM11], who treat the space of polyhedral meshes with
given topology as a manifold embedded in a high dimen-
sional Euclidean space. Given a polyhedral mesh - a point
on this manifold - we wish to explore its neighborhood,
hence the term “shape space exploration”. Naturally, exact
computation of the neighborhood will be difficult, so an
osculant to the manifold at the point, which approximates
the neighborhood and is simpler to traverse, is constructed
instead. Sadly, this approximation is too crude to allow
straying too far from the original polyhedral mesh without
violating the planarity constraints. To rectify this, succes-
sive projections to the manifold must be made. The authors
suggest using the same method as Liu et al. [LPH*06]
which, again, is very time-consuming.

3. Contributions

Our main contributions are:

1. An extremely simple, essentially linear-time optimi-
zation algorithm to generate a polyhedral mesh based
on a given control mesh.

2. A novel view of graph liftings for architectural de-
sign.

3. A simple approach to accommodate a variety of other
constraints.

4. Mesh Planarization

4.1 Problem Statement

Let ܲ ൌ ሼ݌௜ሽ௜ୀଵ
ேೇ be the geometry of a set of vertices of a

given control mesh and ܳ ൌ ሼݍ௜ሽ௜ୀଵ
ேೇ the geometry of the

same set of vertices of a solution mesh (to be found). Let

ܨ ൌ ൛ ௝݂ൟ௜ୀଵ
ேಷ

 be the set of faces of the control mesh, where

each face is given as an ordered (oriented) list of vertices.
Since the topology of the control and solution meshes is
identical, so are their face sets. We write ݌௜ א ௝݂ if the

vertex ݌௜ is incident to ௝݂. Abusing notation slightly, we

will also write ௝݂ א -௜ to state the same in reverse. In addi݌

tion, we define the set of corners ܥ of the mesh as the set
of indices of incident vertex-face pairs in the mesh. In
other words, ሺ݅, ݆ሻ א ௜݌ if ܥ א ௝݂ (or ௝݂ א .(௜݌

A very general way of describing the optimization prob-
lem is as follows:

min
Q

,ሺܲݐݏ݅݀ ܳሻ ൅ ௥௘௚ሺܳሻܧߣ

s.t. ݍ ห ݍ൛ ݆׊ א ௝݂ൟ are co-planar
 (1)

where ݀݅ݐݏ is some distance function between the mesh
surfaces defined by ܲ and ܳ, and ܧ௥௘௚ is a regularization
term defined on the result. For the sake of clarity, we will
limit our discussion to a point-to-point Euclidean distance,
and drop the regularization term for now.

The planarity constraint on each face can be expressed in
terms of the vertex geometry of the face alone. For exam-
ple, the volume of a tetrahedron defined by four vertices of
a quad is zero iff the vertices are coplanar, leading to a

trilinear constraint on the coordinates of the four vertices.
In the general case of a face containing ݒ ൐ 4 vertices, co-
planarity of the face vertices is obtained iff

det ሺ்ܳܳሻ ൌ 0 (2)

where ܳ is the ݒ4 matrix of the vertex geometry in ho-
mogeneous coordinates. This is a polynomial constraint of
order six, which is more difficult to work with.

A key observation is that by adding the normals to the
planes of the faces as variables, the optimization problem
can be cast as a least squares problem with only bilinear
and norm constraints. Specifically, we characterize each
face ௝݂ by its unit normal vector ௝݊ and the distance ௝݀ of

its plane from the origin, forming the sets ܰ and ܦ of
normals and distances respectively. We require that for
each face ௝݂ and for each vertex ݍ௜ א ௝݂, ݍ௜ will lie on the

plane defined by ሺ݊௝, ௝݀ሻ. Problem (1) (without the regu-
larization term) may then be stated as

min
௤೔אொ
௡ೕאே
ௗೕא஽

෍ԡ݌௜ െ ௜ԡଶݍ
ேೇ

௜ୀଵ

s.t. ௝݊ · ௜ݍ ൅ ௝݀ ൌ 0, ,ሺ݅׊ ݆ሻ א ܥ

ฮ ௝݊ฮ
ଶ
ൌ 1

 (3)

We will refer to these constraints simply as distance
from plane constraints (DFP). We mention here that Deng
et al. [DPW11] also proposed a similar formulation of the
problem for designing planar webs. We improve on this by
showing, in the next section, how to take advantage of the
form (3) of the problem to devise a very efficient solver.

4.2 An Alternating Solver

While problem (3) may be solved using a generic solver, it
does not scale well, as do other non-linear problems. Most
of the commercial solvers we tried, when confronted with
this problem, took a long time to handle a mesh of more
than few hundred vertices. Implementing a dedicated solv-
er requires considerable expertise. We now show how to
circumvent this complexity, using only the simplest tools
of linear algebra.

First we apply the quadratic penalty method [NW99, Ch.
17.1], rewriting problem (3) as

min
௤೔אொ
௡ೕאே
ௗೕא஽

௜݌෍ԡߤ െ ௜ԡଶݍ
ேೇ

௜ୀଵ

൅ ሺ1 െ ሻߤ ෍ ൫ ௝݊ · ௜ݍ ൅ ௝݀൯
ଶ

ሺ௜,௝ሻא஼

s.t. ฮ ௝݊ฮ
ଶ
ൌ 1

ሺ4ሻ

where ߤ is the penalty coefficient. Starting with ߤ ൌ 1 and
an initial guess, the method requires successively solving
(4), where in each iteration ߤ is gradually reduced, and the
previous solution is used as a new initial guess. This itera-
tion is guaranteed to converge to a local minimum of (3)
under very mild conditions.

Problem (4) still cannot be solved by simple means. But
consider the following: if the ௝݊’s are fixed, then (4) be-
comes quadratic and may solved by a (sparse) global linear
system.

Although the global linear system can be solved very
quickly, we can further simplify (4): if the ௝݊’s and the

௝݀’s are fixed, then the problem becomes completely sepa-
rable in the remaining variables. That is, we can find each
 ௜ as the onlyݍ ௜ by solving a small local problem withݍ
variable. Namely,

min
௤೔

቎ߤԡ݌௜ െ ௜ԡଶݍ ൅ ሺ1 െ ሻߤ ෍ ൫ ௝݊ · ௜ݍ ൅ ௝݀൯
ଶ

ሺ௜,௝ሻא஼

቏
(5)

The same happens if we fix the ݍ௜’s. In that case finding
each pair ሺ݊௝, ௝݀ሻ amounts to solving the local problem

min
௡ೕ,ௗೕ

෍ ൫ ௝݊ · ௜ݍ ൅ ௝݀൯
ଶ

ሺ௜,௝ሻא஼

s.t. ฮ ௝݊ฮ
ଶ
ൌ 1

 (6)

Problem (5) is a simple least squares problem in qi and
can be solved using the standard pseudo-inverse technique.
It is exactly the problem of finding a point qi which is as
close as possible (in the Euclidean norm) to a set of given
planes. Similarly, problem (6) is exactly that of fitting a
plane ሺ ௝݊, ௝݀ሻ to a set of points, and can be solved using
eigen-decomposition. The details can be found in Algo-
rithm Planarize.

Thus we alternate between fixing one set of variables
and solving for the other set repeatedly, until convergence.
Following [SA07] and [LZX*08], we call the first ap-

proach, involving a global linear system for ൫ݍ௜, ௝݀൯ and a

local system for ௝݊ a “local/global” (L/G) scheme. The

second approach, involving a local system for ݍ௜ and a
local system for ሺ ௝݊, ௝݀ሻ is called “local/local” (L/L). We
will refer to both of them as the local schemes. The solu-
tion to (4) using a generic non-linear solver will be called
simply the “global” solution.

Since both the local schemes are not strictly of the alter-
nating least squares type, we cannot prove that they will
achieve a local minimum of (4), (although it is easy to see
that they do converge). While this is necessary for the
penalty method to work, our experiments show that in
well-behaved cases, both solvers achieve the same minima.
Furthermore, even in difficult situations, the final energy is
always zero, meaning that the planarity constraints are
satisfied.

Regularization. Starting from the general problem in (1),
many additional regularization terms can be added. How-
ever, to benefit from the local approaches, the term must
have a local form which can be incorporated to each prob-
lem in the alternating steps. The most obvious regulariza-
tion term that comes to mind is Laplacian smoothing,
where the distance between a vertex and the average of its
neighbors is minimized. As a global energy, it is expressed
by

,ଵݍ௟௔௣,௤ሺܧ … , ௡ሻݍ ൌ෍ቌݍ௜ െ
1
ܽ

෍ ௞ݍ௜,௞ݓ
௞א௡௘௜௚௛ሺ௤೔ሻ

ቍ

ଶ
ே

௜ୀଵ

 (7)

where ݄݊݁݅݃ሺݍሻ is a list of indices of vertex-neighbors of
ܽ and ݍ ൌ ∑ ௡௘௜௚௛ሺ௤೔ሻא௜,௞௞ݓ . This energy can be separat-
ed, as required by our method, into an energy term for each
vertex

௜ܧ
௟௔௣,௤ሺݍ௜ሻ ൌ ቌݍ௜ െ

1
ܽ

෍ ௞ݍ௜,௞ݓ
௞א௡௘௜௚௛ሺ௤೔ሻ

ቍ

ଶ

(8)

A similar energy is occasionally used for the normals of
the faces. That is, the normals of faces are smoothed as
well. Locally, this can be written as

௝ܧ
௟௔௣,௡൫ ௝݊൯ ൌ ቌ ௝݊ െ

1
ܾ

෍ ௝,௞݊௞ݓ
௞א௡௘௜௚௛ሺ௙ೕሻ

ቍ

ଶ

where ݄݊݁݅݃ሺ݂ሻ is a list of indices of faces-neighbors of
݂ and ܾ ൌ ∑ ே೑ೕא௝,௞௞ݓ

. Both of these energies are quad-

ratic, and adding them to the objective functions in (7) and
(8) does not make the algorithm any more complicated.

Several other similar regularization terms have been pro-
posed in the literature, such as minimizing the change in
the Laplacian [ZSW11]. We will discuss more complex
terms in Section 6, once we establish a generalization of
the alternating schemes.

5. Evaluation

Implementation Details. The global solution to (3) was
computed using the KNITRO [BNW06] general-purpose

ߤ ൌ ଴ߤ

Algorithm Planarize (local/local)

Compute ܳ (ܲ,ܰ, ,ܦ ,ܨ ,଴ߤ ,ݎ ݇ሻ

ܳ ൌ ܲ

do ݇ times

for ݆ ൌ 1 to ிܰ

 തܳ ൌ Rows of ܳ corresponding to vertices of ௝݂

ܯ ൌ Average of columns of ܳ

 ܳ௖തതത ൌ ܳ െܯ

 ௝ܰ ൌ Eigenvector with smallest eigenvalue of ܳ௖തതത
்
ܳ௖തതത

 ௝݀ ൌ -்ܯ
௝ܰ

 end

 for ݅ ൌ 1 to ௏ܰ

 ഥܰ ൌ Rows of ܰ corresponding to faces of ݍ௝

ഥܦ ൌ Entries of ܦ corresponding to faces of ݍ௝

ܣ ൌ ܫߤ ൅ ሺ1 െ ሻߤ ഥ்ܰ ഥܰ

 ܾ ൌ ௜݌ߤ െ ሺ1 െ ഥ்ܦሻߤ ഥܰ

 Solve ݍܣ௜ ൌ ܾ for ݍ௜

 end

ߤ ൌ ߤݎ

End

solver, which uses Sequential Quadratic Programming
(SQP). This is the fastest generic solver we could find
(also supported by the Benchmarks for Optimization Soft-
ware: http://plato.asu.edu/bench.html). We provided ana-
lytic gradients, but the Hessians were computed numerical-
ly, based on their sparsity pattern, which is faster than
evaluating them analytically. Initial planes were found
using the second loop of Algorithm Planarize.

The local schemes were implemented in C++. We used
Eigen v3 [GJ10] for matrix computation and [OMP] for
parallelizing the two loops in a multi-core environment.
Since both loops do not require any synchronization, using
OpenMP to parallelize them is extremely simple: we had
only to add the line.

#pragma omp parallel for schedule (dynamic,1)

before each loop. The resulting speedup was 3-5 on a 4-
core Intel i7 CPU with 4GB RAM. There is still a lot more
room for improvement, since we did not optimize calls to
Eigen, and have observed many redundant memory alloca-
tions.

Planarity measure. All of the constraints mentioned in
Section 4.1 force planarity in different ways such that a
planar face will always measure exactly zero, but the be-
havior of the different measures on non-planar faces is
considerably different. For a fair comparison between the
methods, we always measure non-planarity of a computed
face as the smallest eigenvalue obtained by principle com-
ponent analysis (PCA) of the face vertex geometry.

Comparison to other planarity constraints. As men-
tioned in Section 4.1, there are a number of ways to meas-
ure the planarity of faces. In addition, Liu et al. [LPH*06]
measure the planarity of a quad by the sum of its angles,
which is 2π iff the quad is planar. Wang et al. [WLY*08]
measure the planarity of a hexagon by measuring the pla-
narity of the quads defined by each four consecutive verti-
ces, which, in turn, is measured by the volume of the tetra-
hedron spanned by those four vertices. These two methods
are easily generalized to any sized polygon.

These planarity constraints, as well as the one described
in (2), and the DFP constraints we use in (3), are equiva-
lent in the sense that they must define the same feasible
region in space, thus the same global minimum. However,
they differ in practice when an iterative solver is used.
Each set of constraints define a different gradient descent
path which may or may not end up at a feasible point and
the number of steps needed to reach a feasible point varies.
Fig. 7 and 8 demonstrates the convergence of a generic
optimizer using the various sets of constraints with a point-
to-point distance as the objective. Using DFP constraints,
the optimizer always reaches a feasible point, and in the
least number of steps. Using other constraints causes the
optimizer to get stuck, in many cases, away from the feasi-
ble domain. Thus we conclude that even if a generic global
solver is to be used, it is best to apply it to the problem as
described using the DFP constraints (3).

The other aspect of the optimization that should be eval-
uated is the final energy that was achieved. This is mean-
ingful only if two solutions have the same measure of pla-
narity. Therefore, the meshes we show in Fig. 7 and 8 are
not the final results of the optimization, but intermediate

results acquired just after the mesh achieves a given level
of planarity (as measured using PCA).

Global vs. L/G vs. L/L. Using DFP constraints improves
the convergence properties and the results of the optimiza-
tion, but the major benefit in using them is the option of
using the local schemes. As shown earlier, these approach-
es are very simple to implement, and their runtimes are
several orders of magnitudes smaller than the alternatives.
For example, it took 5 and 12 seconds to optimize Torus1
and Torus2 from Fig. 7 using a global optimizer and only
70 and 144 milliseconds to optimize using the L/L scheme.
Hence, the only concern regarding whether to use them or
not is related to the final result. Their behavior, or more
precisely, the behavior of the penalty method, is directly
related to the rate of change of ߤ. It has to be reduced
“slowly enough” for the local schemes to converge to the
same minimum as the global solver. In our tests, “slowly
enough” was determined experimentally, although a more
deterministic method exists (see [NW99, Ch. 17.1]). Our
experiments show that setting ݎ ൌ 0.9 in the L/L case and
ݎ ൌ 0.7 in the L/G produces good results after 100 and 30
iterations respectively.

The runtime of Algorithm Planarize depends mostly on
௏ܰ, ிܰ and the number of iterations ݇, and the dependence

is linear. We have observed that for ߤ ൏ 10ିସ, the con-
straints are satisfied with a tolerance less than 10ି଺, which
is the default tolerance in most commercial optimizers.
Therefore, ݇ depends only on ߤ଴ and ݎ. We have also ob-
served that the results are not improved by setting both ݐ଴
and ݎ to a value larger than 0.9. Hence ݐ଴ and ݎ can be
fixed. We therefore conclude that the algorithm essentially
depends linearly on ௏ܰ+ ிܰ. The times measured to run
100 L/L iterations on the meshes of Fig. 7 and 8 are
graphed in Fig. 2, where the linear behavior is evident.

Analysis of the time complexity for the L/G case is simi-
lar, only in this case a sparse linear system must be solved
at each iteration. While theoretically this requires quadratic
time, in practice we see from Table 1 and Fig. 2 the time is
linear in the number of faces. This is perhaps due to the
specific sparsity pattern of this particular linear system.

Model (fig)
Fac-
es

Vertices
L/G
Time

L/L
Time

Level 1 (2a) 12 20 16 1
Level 2 (2b) 48 64 44 4
Level 3 (2c) 192 224 64 16
Level 4 (2d) 768 832 238 42
Quadmesh 1 1027 1154 310 50
Torus1 1080 2160 618 70
Quad mesh 2 1579 1791 536 76
Torus2 1944 3888 1068 144
Level5 3072 3200 1126 176
Table 1: Runtime (msec) of 30 L/G iterations and 100
L/L iterations

Figure 1: Plot
of Table 1.

Interactive Tweaking. It has been noted before that it is
sometime preferable to decompose the point-to-point Eu-
clidean norm to a distance from the surface normal and
from the tangent plane (also known as point-to-plane). If
݊௤ is the unit normal at the vertex ݍ, the (squared) distance
of a point ݍ′ from the tangent plane at ݍ is simply:

,ݍ௧൫ܦ ൯′ݍ ൌ ቀ൫ݍ െ ൯′ݍ · ݊௤ቁ
ଶ

and the (squared) distance from the normal is:

,ݍ௡൫ܦ ൯′ݍ ൌ ฮ൫ݍ െ ൯′ݍ ൈ ݊௤ฮ
ଶ

which are still quadratic if either ݍ or ݊ are fixed. In our
implementation, we replaced the Euclidean norm with a
combination of ܦ௧ and ܦ௡. An example is shown in Fig. 2
– both the global solution and the local solution with Eu-
clidean distance generate artifacts. In contrast, penalizing
only distance from the tangent plane produces nice results.
As shown in the accompanying video, reaching the best
solution is possible by interactive tweaking of the parame-
ters of the problem.

 Edit-and-Observe. One of the main difficulties of model-
ing with freeforms via control points is that it is hard to
predict the effect of moving a control point, especially for
a novice. This is the case whether using an interpolation
scheme, or to a greater extent, using an approximation
scheme. The designer must constantly reposition the verti-
ces of the control mesh, change their weights, change their
continuity and so on. This process is feasible only because
of the immediate result provided. The same is true when
working with polyhedral meshes; the planarity constraint

causes them to be somewhat unpredictable. So a real-time
response is critical, and this is feasible due to efficiency of
the local schemes.

 We expect a typical design session would start from a
non-polyhedral mesh constructed in a generic modeling
system. Once the designer is satisfied with the general
shape of the model, the design mode will be changed to
polyhedral mode, by meshing or otherwise. The model
would then become a control (wireframe) mesh, and the
resulting polyhedral solution would be seen simultaneous-
ly. Sometimes a few artifacts may occur in the result,
which can be fixed manually by the user or automatically.
Figure 3 shows a mesh before and after this cleanup pro-
cess. The solution has a few short edges that seem redun-
dant. Using an automatic edge collapse method, all short
edges are removed, and the optimization process runs
again. The result is a clean polyhedral mesh. If the result is
still not satisfying, the control mesh can be completely
remeshed using one of the methods mentioned in this pa-
per, and then optimized.

In the accompanying video, we show a very simple mesh
modeling program we have developed to deform a control
mesh and display the polyhedral result. The video shows
that using our local solver, real-time deformation of poly-
hedral meshes is indeed possible.

 Currently, we can use our software to locally reposition
vertices, and set the optimization parameters interactively.
Using “soft selection” we can move a single vertex with a
variable size of its neighborhood. If the original control
mesh generated a good solution, then small deformations
will typically also generate good solutions. Our intention is
to integrate our solver into other deformation schemes,

Figure 3: Using an interactive system, the designer can
spot artifacts (circled), remove them, and immediately see
the result.

Figure 2: Decomposing the Euclidean norm into
components may be preferable. Minimizing only the point-
to-plane distance produces a solution closer to the control
mesh (of 901 vertices and 880 quads). Note the circled
region, where the less planar faces reside, and which
causes most of artifacts in the planarized results. It took
38 msec to run 100 iterations with our L/L solver and 4
sec to solve using the global solver.

Control (non-planar) Global Euclidean

Local/local point-to-point Local/local point-to-plane

Control

Solution

After
cleanup

such as skeletal or cage based deformations, and into
meshing schemes such as those discussed in this paper.

6. Additional Results

6.1 Optimal Lifting

We now discuss a special case of the main problem pre-
sented in this paper which turns out to be related to the
classic “lifting” problem of planar graphs. This could have
architectural applications in its own right. A complete
exposition on this problem and its solution can be found in
[Ric96], and it can be stated as follows: Given a 3-
connected planar graph ܩ embedded in the
plane, can we assign heights, or lift each
vertex, such that each face remains pla-
nar? This is not always possible, in a
non-trivial way, and a classical exam-
ple is the so-called Schoenhart graph
(see embedded image on right).

A solution to the lifting problem, if it exists, can be com-
puted by following the same ideas as presented in Section
5: add the normals of the faces to the problem as variables
and get (3) again, only with less variables. Since the ݔ and
-ݖ coordinates of each point are known, if we fix the ݕ
coordinates of the normals (say to 1) and then safely ignore
their unit length constraints, we would be left with nothing
more than a linear least squares problem with linear con-
straints, whose global minimum may be obtained by solv-
ing a linear system. For the sake of completeness, we de-
tail here the solution to this problem.

Denote by ̂ݖ௜ the ݖ-coordinates of the vertices to be
found, ௝݊

௫ and ௝݊
௬ the ݔ and ݕ components of the normal to

face ௝݂ (the ݖ component is set to 1) and ௝݀ as before. De-
fine the variable vector ݓ as a ൫ ௩ܰ ൅ 3 ௙ܰ൯ ൈ 1 column
vector obtained by concatenating ̂ݖ௜, ௝݊

௫, ௝݊
௬ and ௝݀. The

energy function is

෍ሺݖ௜ െ ௜ሻଶݖ̂
ேೇ

௜ୀଵ

ൌ ԡݓܣ െ ܾԡଶ,

ܣ ൌ ൬
ேೇܫ ૙
૙ ૙

൰ , ܾ ൌ ቀ
௜ݖ
૙ቁ

where ܫேೇ is the ௏ܰ ൈ ௏ܰ identity matrix, and ૙ is a vector
or a matrix of appropriate size. For each corner ሺ݅, ݆ሻ we
have the linear constraint ̂ݖ௜ ൅ ௜ݔ ௝݊

௫ ൅ ௜ݕ ௝݊
௬ ൅ ௝݀ ൌ 0. Let

ܿ be the ܤ ൈ ൫ ௩ܰ ൅ 3 ௙ܰ൯ matrix (ܿ is the number of cor-
ners) and ݀ the ܿ ൈ 1 vector such that ݓܤ ൌ 0 expresses
all of these equations. Then the optimization can be written
as

min
௪
ԡݓܣ െ ܾԡଶ

.ݏ ݓܤ .ݐ ൌ 0

The solution to this problem is known to be

ቀ
ݓ
ቁߣ ൌ ቀܣ

ܣ் ்ܤ

ܤ 0
ቁ
ିଵ

ቀܣ
்ܾ
݀
ቁ

where ߣ are Lagrange multipliers used to find the solution.
Since we are ultimately interested only in ̂ݖ, we can simply
take the first ௏ܰ elements of the solution.

We provide a few examples of such liftings in Fig. 4. It
is important to remember how limited liftings are when
designing them. Even if the embedding is liftable, the

space of liftings can have very low dimension. For exam-
ple, it is easy to show that the space of liftings of a 3-
regular graph (having any planar geometry) is only 4-
dimensional.

We can analyze this space of liftings from an algebraic
point of view: it is represented by the nullspace of the con-
straint matrix ܤ. Any basis of ݈݈݊ݑሺܤሻ can be used to
construct all the valid liftings. This suggests a different
modeling scheme, where the designer is given a small set
of “basis functions” from which she can create a lifting.
However, not every spanning subset is geometrically
meaningful. In what follows, we briefly describe three
choices of such sets, where a function is associated with
each vertex. Results are shown in Fig. 5.

Fundamental Liftings. We construct one function per
vertex as follows. For each vertex ݌௜ in the mesh, we de-
fine target heights ݖ௝ ൌ ௜ is then the݌ ௜௝. The function forߜ

optimal lifting for these target values of ݖ௜, which we call
the fundamental lifting of vertex ݅.

Sparse Liftings. While the aim of the fundamental lifting
is to move one vertex while the rest stay in place as much
as possible, we can try something a little different: Move
several vertices together, while the rest do not move at all,
forming sparse liftings. This corresponds to sparse vectors
of ݈݈݊ݑሺܤሻ. Generally, finding such vectors is an NP-hard
problem, but the local nature of planar graphs allows us to
find sparse liftings for small neighborhoods and then stitch
them to form sparse liftings for the entire graph.

EigenLiftings. Both previous approaches give the designer
a tool to fine-tune the lifting, using delta-like functions. To
add globally smooth liftings to the set, we resort to the
eigenvectors of the combinatorial graph Laplacian, ܮ. Of
course, the eigenvectors must be constrained to the space
of liftings, and these can be found using the constrained
Rayleigh quotient:

max
୵

ݓܮ்ݓ
ݓ்ݓ

s. t. ݓܤ ൌ 0

The constrained eigenvectors themselves are given
[GvMG89] by the eigenvectors of ܲܲܮ, where

Figure 4: Optimal liftings approximating non-polyhedral
control meshes with the same topology and (x,y) projec-
tion.

Optimal lifting Control

ܲ ൌ ܫ െ ܤሻିଵ்ܤܤሺ்ܤ

6.2 Other Constraints

We now show how to generalize the approach presented in
Section 5. We assume a scenario similar to that of Section
4, where each face ௝݂ comes with a vector of parameters ௝ܽ
(e.g. face normal). We consider the following problem:

min
௤೔אொ

 ෍ܦሺݍ௜, ܵሻ

ேೡ

௜

s. t. ܨ൫ݍ௜, ௝ܽ൯ ൌ 0, ,ሺ݅׊ ݆ሻ א ܥ
൫ܩ ௝ܽ൯ ൌ ݆׊ ,0

(7)

where ܦ is a distance measure. Namely, we wish to mini-
mize the sum of distances of the ݍ௜’s from a surface ܵ,
while satisfying a corner constraint ܨ and a face constraint
-For example, the planarization problem imposes a cor .ܩ
ner constraint that each vertex be in the planes of its faces,
and a face constraint that each normal has unit norm. ܨ and
 .can also be an entire vector of constraints ܩ

We can write (7) in the penalty form:

min
௤೔אொ

,௜ݍሺܦ෍ߤ ܵሻ

ேೡ

௜

൅ ሺ1 െ ሻߤ ෍ ,௜ݍଶ൫ܨ ௝ܽ൯
ሺ௜,௝ሻא஼

s. t. ܩ൫ ௝ܽ൯ ൌ ݆׊ ,0

where the squaring of ܨ can be dropped if ܨ is known to
be positive. Fixing the ݍ௜’s, we are left with the separate
problems

min
௔ೕ

,௜ݍଶ൫ܨ ௝ܽ൯ ൌ 0

.ݏ ൫ܩ .ݐ ௝ܽ൯ ൌ ݆׊ ,0

Even if these problems are still complicated, they are
much smaller and can be solved in parallel. To get the
alternating version of the problem, we must fix some of the
face parameters. If we fix all of them, then the problem is a
local/local type. Otherwise, it is a local/global type. Decid-
ing which parameters to fix is problem-dependent; We can
fix as many parameters as we want, as long as the lo-
cal/global solution approximates the global solution for
each ߤ. Although hard constraints become soft in each
iteration using the penalty method, they are effectively
hard. We may choose however, to explicitly use soft con-
straints, making them work essentially as regularizers.

As an example, we construct what may be called an As-
Rigid-As-Possible (ARAP) or As-Similar-As-Possible
(ASAP) planarization. This means that we aim for each
solution face to be a rigid or similar copy of the corre-
sponding control face, as much as possible. To this end, we
define for each face ௝݂ the normal ௝݊ and distance ௝݀ for
planarization as usual. In addition, we define a rig-
id/similarity transformation ܣ௙ and a translation vector ௙ܶ.
Then problem (7) may be written first with hard con-
straints as:

min ෍ԡ݌௜ െ ௜ԡଶݍ
ேೇ

௜ୀଵ
s.t. ࢚࢟࢏࢘ࢇ࢔ࢇ࢒ࡼ

௝݊ · ௜ݍ ൅ ௝݀ ൌ 0, ,ሺ݅׊ ݆ሻ א ܥ

ฮ ௝݊ฮ
ଶ
ൌ 1

࢚࢟࢏࢘ࢇ࢒࢏࢓࢏ࡿ/࢚࢟࢏ࢊ࢏ࢍ࢏ࡾ

௜݌௝ܣ ൅ ௝ܶ ൌ ௜ݍ
௝ܣ
௝ܣ் ൌ ܫݏ

Figure 5: Examples of (top to bottom) fundamental, sparse and eigen-liftings, for the three planar graphs in the top row.

where ݏ ൌ 1 in the case of rigidity. Of course, the con-
straints are inconsistent in general, hence we convert the
rigidity/similarity from a hard constraint to a regularization
term, and write it in penalty form, resulting in

min ߤ ቌ෍ԡ݌௜ െ ௜ԡଶݍ
ேೇ

௜ୀଵ

൅ ߣ ෍ ԡܣ௝݌௜ ൅ ௝ܶ െ ௜ԡଶݍ

ሺ௜,௝ሻא஼

ቍ ൅

 ൅ሺ1 െ ሻߤ ෍ ൫ ௝݊ · ௜ݍ ൅ ௝݀൯
ଶ

ሺ௜,௝ሻא஼

s.t. ฮ ௝݊ฮ
ଶ
ൌ 1

௝ܣ
௝ܣ் ൌ ܫݏ

Deriving the local/global form is now simple; By fixing ݍ௜,
the rest of the variables can be found locally as follows:
each (௝݊ , ௝݀ሻ may be computed using the same method as

in Section 5 and each ሺܣ௝, ௝ܶሻ may be computed via the
local problem:

min ԡܣ௝݌௜ ൅ ௝ܶ െ ௜ԡଶݍ

s.t. ௝ܣ
௝ܣ் ൌ ܫݏ

which is nothing but the orthogonal Procrustes problem,
the solution of which can be found using Singular Value
Decomposition (SVD) [ZG07]. For the global step, we fix
only the ௝݊ and ܣ௝ and are left with a constrained linear
least squares problem for the rest of the variables.

 As before, an L/L scheme is also possible. However, our
experiments show that for this problem, an L/L scheme
does not perform well, and in fact, the results are very
similar to those of Algorithm Planarize (meaning that the
similarity/rigidity constraints are not satisfied well). On the
other hand, the L/G scheme with ASAP/ARAP regulariza-
tion reduce the visual artifacts considerably for the same
measure of planarity, compared to simple planarization.
We compare the results of applying two local schemes to

the mesh in Fig. 6: The L/L scheme, with point-to-point
distance and the L/G scheme with ASAP regularization
without a proximity term. The results show that in prob-
lematic areas, the L/L scheme degenerates the quads into
triangles, while ASAP regularization preserves the quads,
sometimes making them smaller. This better preserves the
structure of quad meshes created as conjugate line net-
works, which may be damaged otherwise.

As a final note, we mention two useful constraints that
can be formulated to fit our approach. First, circularity
[LPH*06], where the vertices of each face lie on a circle,
can be obtained by adding a center and a radius as addi-
tional parameters for each face. Second, we can constrain
quad faces to be parallelograms using two additional span-
ning vectors per face.

7. Conclusions and Discussion

We have presented a methodology for efficiently compu-
ting and manipulating polyhedral meshes. It removes the
serious computational bottleneck of finding an approximat-
ing polyhedral mesh to a given reference mesh, while in-
corporating a variety of constraints. Not only is it more
efficient, but it is significantly easier to implement than a
dedicated optimizer. Our experiments show that for inputs
which are close to polyhedral, such as those generated by
many meshing methods, all optimization methods (ours
and others) reach very similar results. Hence, these mesh-
ing schemes can only benefit by incorporating our much
faster optimization procedure.

Preserving the general “look” of a given mesh, e.g. conju-
gate lines, when converting it to polyhedral form, is quite
important in practical applications. We have shown that
this may be achieved somewhat when imposing an “As-
Similar-As-Possible” constraint on the solution. We won-
der if there are other ways to achieve a similar result, also
amenable to our techniques.

We would like to explore further the linear theory of opti-
mal liftings. Interesting questions are the dimension of the

Figure 6: As-similar-as-possible planarization. The control mesh (left) is planarized by the regular L/L scheme (center) and
the L/G scheme with ASAP regularization (right). ASAP results in much less distortion of the faces, as indicated by the value
of ݎ - the reduction in the non-planarity measure.

Control

2500 vertices

Local/Global with ASAP

9 steps

࢘ ൌ ૙. ૙ૡ

Local/Local

50 steps

࢘ ൌ ૙. ૚૜

space of liftings as a function of the mesh structure and
meaningful bases for this space. We would also like to
explore the other linear spaces of polyhedral meshes.

Acknowledgements. We thank Johannes Wallner and
Alexander Schiftner for providing us the real world meshes
in Fig. 7 (top two meshes). We would also like to thank
Philippe Block and Lorenz Lachauer for introducing us to
the optimal lifting problem and the meshes in Fig. 4.

C. Gotsman's work was partially supported by the B. and
G. Greenberg Research Fund (Ottawa).

References

[AW11] ALEXA M., WARDETZKY M.: Discrete Laplacians on
general polygonal meshes. Proc. SIGGRAPH, 102:1–
102:10 (2006).

[BNW06] BYRD R. H., NOCEDAL J., WALTZ R. A.:
KNITRO: An integrated package for nonlinear optimiza-
tion. In Large Scale Nonlinear Optimization, 3559, 2006,
Springer Verlag, 35–59.

[BDS*12] BOUAZIZ S., DEUSS M., SCHWARTZBURG Y.,
WEISE T., PAULY M.: Shape-Up: Shaping Discrete Geome-
try with Projections. Comp. Graph. Forum 31, 5 (August
2012).

[OMP] OPENMP. API specification for parallel programming.
http://openmp.org/wp/

[CM92] CHEN Y., MEDIONI G.: Object modeling by registra-
tion of multiple range images. Image Vision Comput. 10, 3
(Apr. 1992), 145–155.

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.:
Variational shape approximation. Proc. SIGGRAPH, 905–
914 (2004).

[CW07] CUTLER B., WHITING E.: Constrained planar
remeshing for architecture. In Proceedings of Graphics In-
terface 2007 (New York, NY, USA, 2007), GI ’07, ACM,
pp. 11–18.

[DPW11] DENG B., POTTMANN H., WALLNER J.: Functional
webs for freeform architecture. Computer Graphics Forum
30(5):1369–1378 (2011).

[GGM89] GANDER W., GOLUB G.H., VON MATT U.: A con-
strained eigenvalue problem. In Linear Algebra Appl. 114-
115, pp. 815-839, (1989).

 [GJ10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3.
http://eigen.tuxfamily.org.

[HOF10] HOFFMANN T.: On local deformations of planar quad
meshes. In Proc. of ICMS (Berlin, Heidelberg, 2010),
ICMS’10, Springer-Verlag, pp. 167–169.

[LPH*06] LIU, Y., POTTMANN, H., WALLNER, J., YANG, Y.-
L., WANG W.: Geometric modeling with conical meshes
and developable surfaces. ACM Trans. Graphics 25, 3 (July
2006) 681–689.

[LZX*08] LIU L. ZHANG L., XU Y., GOTSMAN C.,
GORTLER S.: A local/global approach to mesh parameteri-
zation. In Proc. of SGP (Aire-la-Ville, Switzerland, Swit-
zerland, 2008), SGP ’08, Eurographics Association, pp.
1495–1504.

[NW99] NOCEDAL J., WRIGHT S.: Numerical optimiza-
tion.Springer, Aug. 2000.

[RIC96] RICHTER-GEBERT J. Realization Spaces of Polytopes,
Vol. 1643 of Lecture Notes in Mathematics. Springer
(1996).

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface
modeling. In Proc. of SGP (Aire-la-Ville, Switzerland,

Switzerland, 2007), SGP ’07, Eurographics Association, pp.
109–116. 1

[TUT63] TUTTE W. T.: How to draw a graph. Proc. London
Math. Soc. 13(1):743–767 (1963).

[WLY*08] WANG W., LIU Y., YAN D., CHAN B., LING R.,
SUN F.: Hexagonal meshes with planar faces. Technical
Report CS-2008-13, Hong Kong Univ (2008).

[YYPM11] YANG Y.-L., YANG Y.-J., POTTMANN H., MITRA

N. J.: Shape space exploration of constrained meshes.
ACM Transactions on Graphics 30, 6, 124:1-124:12 (2011).

 [ZSW11] ZADRAVEC M., SCHIFTNER A., WALLNER J.: De-
signing quad-dominant meshes with planar faces. Comput-
er Graphics Forum 29, 5 (2010), 1671–1679.

[ZG07] ZHU Y., GORTLER S. J.: 3D deformation using mov-
ing least squares. Tech. Rep. TR-10-07, Harvard Univeristy
(2007).

Figure 7: Planarization results and convergence using a global algorithm with different types of constraints mentioned in
this paper and the local schemes derived from DFP formulation.

Figure 8: More planarization results and convergence using a global algorithm with different types of constraints men-
tioned in this paper and the local schemes derived from DFP formulation. These meshes were generated by applying the
Catmull-Clark subdivision scheme to the top mesh.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

