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Abstract

The problem of planar mapping and deformation is central in com-
puter graphics. This paper presents a framework for adapting gen-
eral, smooth, function bases for building provably good planar map-
pings. The term ”good” in this context means the map has no fold-
overs (injective), is smooth, and has low isometric or conformal
distortion.

Existing methods that use mesh-based schemes are able to achieve
injectivity and/or control distortion, but fail to create smooth map-
pings, unless they use a prohibitively large number of elements,
which slows them down. Meshless methods are usually smooth by
construction, yet they are not able to avoid fold-overs and/or control
distortion.

Our approach constrains the linear deformation spaces induced by
popular smooth basis functions, such as B-Splines, Gaussian and
Thin-Plate Splines, at a set of collocation points, using specially
tailored convex constraints that prevent fold-overs and high distor-
tion at these points. Our analysis then provides the required density
of collocation points and/or constraint type, which guarantees that
the map is injective and meets the distortion constraints over the
entire domain of interest.

We demonstrate that our method is interactive at reasonably com-
plicated settings and compares favorably to other state-of-the-art
mesh and meshless planar deformation methods.
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1 Introduction

Space deformation is an important tool in graphics and image pro-
cessing, with applications ranging from image warping and char-
acter animation, to non-rigid registration and shape analysis. The
two-dimensional case has garnered a great deal of attention in re-
cent years, as is evident from the abundance of literature on the
subject. Virtually all methods attempt to find maps that possess
three key properties: smoothness, injectivity and shape preserva-
tion. Furthermore, for the purpose of warping and posing charac-
ters, the method should have interactive performance. However,

Figure 1: Our method is capable of generating smooth bijec-
tive maps with controlled distortion at interactive rates. Top row:
source image. bottom row: examples of deformations.

there is no known method that possesses all of these properties. In
this paper, we provide the theory and tools to generate maps that
achieve all of these properties, including interactivity.

Previous deformation models can be roughly divided into mesh-
based and meshless models. Mesh-based maps are predominantly
constructed using linear finite elements, and are inherently not
smooth, but can be made to look smooth by using highly dense
elements. Although the methods for creating maps with controlled
distortion exist, they are time-consuming, and dense meshes pro-
hibit their use in an interactive manner. On the other hand, mesh-
less maps are usually defined using smooth bases and hence are
smooth themselves. Yet we are unaware of any known technique
that ensures their injectivity and/or bounds on their distortion.

The goal of this work is to bridge this gap between mesh and mesh-
less methods, by providing a generic framework for making any
smooth function basis suitable for deformation. This is accom-
plished by enabling direct control over the distortion of the Jacobian
during optimization, including preservation of orientation (to avoid
flips). Our method generates maps by constraining the Jacobian on
a dense set of ”collocation” points, using an active-set approach.
We show that only a sparse subset of the collocation points needs
to be active at every given moment, resulting in fast performance,
while retaining the distortion and injectivity guarantees. Further-
more, we derive a precise mathematical relationship between the
density of the collocation points, the maximal distortion achieved
on them, and the maximal distortion achieved everywhere in the
domain of interest.
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Figure 2: Several examples created with out method. The source of each group is on the left. Note the smooth deformations and the controlled
distortion as can be visually assessed from the spheres texture.

2 Previous Work

There is a vast amount of previous work on planar warping and
deformation, and it is impossible to provide a comprehensive list
here. We therefore focus only on the previous work that is closely
related to this paper.

2.1 Mesh-based deformations

The simplest form of mesh-based deformation is done by linearly
interpolating the positions of the mesh vertices, which can cause
arbitrary distortions and flips. Alexa et al.[2000] suggested control-
ling element distortion by individually interpolating triangles in an
“as-rigid-as-possible” manner, using their polar decomposition. A
generalization of this approach is made by considering the mesh in
special ”coordinates”, which capture the local shape of the mesh
with some invariance property [Sheffer and Kraevoy 2004; Sorkine
et al. 2004; Xu et al. 2005]. Other methods describe mesh deforma-
tions by discretizing a relevant variational problem directly over the
mesh, using a finite-element or finite-difference perspective [Ter-
zopoulos et al. 1987; Xu et al. 2005; Igarashi et al. 2005; Sorkine
and Alexa 2007; Liu et al. 2008; Chao et al. 2010]. Recently, sev-
eral mesh-based methods that explicitly control injectivity and dis-
tortion were introduced [Lipman 2012; Schüller et al. 2013; Chen
et al. 2013]. However, these methods suffer from poor performance
when the density of the mesh is high.

2.2 Meshless deformations

While the optimization front in mesh based methods has been de-
veloped extensively, most meshless based approaches still use only
simple linear blending of basis functions to generate deformations.
Instead, the effort in this field of research was put into defining bet-
ter basis functions. Free-Form Deformation [Sederberg and Parry
1986] and Thin-Plate Spline (TPS) deformation [Bookstein 1989]
were some of the earlier examples. Later, generalized barycentric
coordinates (BC) were designed to be shape aware: for example,
Mean Value Coordinates (MVC) [Floater 2003; Ju et al. 2005]. Dif-
ferent aspects of BC were subsequently improved [Joshi et al. 2007;
Lipman et al. 2008; Weber et al. 2012; Li et al. 2013].

Related to our work, several researchers have developed methods
that attain injectivity under some conditions. Floater and Kosinka
[2010] proved that, for mappings between convex domains, the
MVC achieves injectivity. Similarly, Kosinka and Barton [2010]
provide conditions for injective maps constructed on cube-like do-
mains by using Warren’s BC ([Warren 1996]). Recently, Schneider
et al.[2013], constructed an algorithm that, by composting a series
of MVC mappings, produces a bijection, up to pixel precision. Al-
though their method is attractive, as it only uses the MVC basis, it
produces mappings that are proven to be truly injective only on a fi-
nite set of points. In contrast, our method is more general and works
with different basis functions and distortion measures, and the gen-
erated maps can be shown to satisfy the injectivity and distortion
bounds over the entire domain.

Several methods suggest using the meshless basis functions in a
framework similar to the mesh-based deformation framework, in-
stead of directly controlling the coefficients of the basis function.
This is done by sampling points inside the domain to discretize
and minimize an energy. Adams et al. [2008] used shape func-
tions as defined in [Fries T.-P. 2003] to find an interpolation be-
tween two shapes. Similarly, Ben-Chen et al. [2009] and Weber et
al. [2012] used harmonic and biharmonic coordinates, respectively,
but minimized an energy only on sampled points from the skele-
ton or boundary of the shape. Levi et al. [2013] used the so-called
Interior RBF, but instead of sampling the domain, packed it with
spheres. Their energy strives to retain the shape of the spheres as
much as possible.

Our approach is similar to the ones mentioned above, in that we
also use basis functions and optimize over a set of points. However,
the previous methods have a considerable disadvantage: they can-
not guarantee a bijection or limit the distortion. We overcome this
limitation by first formulating an optimization problem that also
bounds the distortion on a point set, based upon [Lipman 2012].
Since this does not guarantee that the distortion outside the point
set is bounded, we develop sufficient conditions for the deforma-
tion to satisfy distortion bounds on the entire domain. Using these
techniques, we are able to generate smooth maps that are not only
injective, but are also sure to have bounded distortion.

Lastly, we mention that in the subdivision literature, injectivity of
the characteristic map needs to be verified for proving C1 continu-
ity of the limit surface. Several related methods for analysing the
Jacobian were suggested [Reif 1995; Peters and Reif 1998; Zorin
1998].

3 Method outline

Problem statement. We discuss the application of ”handle”-
based deformation. This scenario involves a user who wishes to
smoothly deform a region-of-interest Ω ⊂ R2 in the plane, e.g.
part of an image or a 2D character, under an allowable amount of
distortion and without fold-overs. The user drives the deformation
by positioning handles inside the domain, and manipulating them
in order to define positional constraints. Our algorithm will supply
the map that conforms best to the handles, while not violating the
distortion constraints at any point x = (x, y) inside Ω. The ideal
deformation f : Ω→ R2 can be found as the solution to the general
problem:

min
f

Epos(f) + λEreg(f) (1)

s.t. D(f; x) ≤ Kmax, ∀x ∈ Ω (2)

where Epos is the positional constraints energy, Ereg is a regular-
ization term, which controls the smoothness of the deformation, and
D(f; x) is a measure of the distortion of f at point x (to be defined).
Being infinite-dimensional with infinite number of constraints, the
problem in (1)-(2) is intractable, so a simplification is required.



Given a finite collection of basis functions F = {fi}ni=1, where
fi : Ω→ R, one can construct planar maps by linear combinations
of the basis functions,

f(x) = (u(x), v(x))T =

n∑
i=1

cifi(x), (3)

where ci = (c1i , c
2
i )
T ∈ R2×1 are column vectors. Such a map can

be represented by a matrix c = [c1, c2, ..., cn] ∈ R2×n containing
the coefficients from eq. (3) as columns.

The bases mentioned above (and others) work very well for inter-
polating and approximating scalar functions in the plane, due to
their regularity, approximation power and simplicity. Yet using this
model as-is for building planar maps can, and often does, introduce
arbitrary distortions and uncontrolled fold-overs, which renders this
framework suboptimal for space warping and deformation. Never-
theless, we show how to constrain c in the space R2×n to provide a
mechanism for constructing planar deformations with controllable
distortion and without fold-overs.

Basis functions. Although the framework in eq. (3) is general,
and can be used in theory with any basis function of choice, we
chose to experiment with three popular function bases: B-Splines,
Thin-Plate Splines (TPS), and Gaussians (see Table 1 on the follow-
ing page). Nevertheless, the tools developed in this paper are gen-
eral, and can be used to construct injective and distortion-controlled
mappings from different bases as well.

Distortion. The distortion of a differentiable map f at a point x
is defined to be some measure of how f changes the metric at the
vicinity of x. Most distortion measures can be formulated using the
Jacobian matrix,

Jf(x) =

(
∂xu(x) ∂yu(x)
∂xv(x) ∂yv(x)

)
,

of f at point x, and more specifically, its maximal and minimal sin-
gular values, which we denote by Σ(f; x) and σ(f; x), or simply
Σ(x) and σ(x) when there is no risk of confusion. These values
measure the extent to which the map stretches a local neighborhood
near x.

We denote the distortion measure of f at x by D(f, x) = D(f) =
D(Σ(x), σ(x)), where the greater D is, the greater the distortion.
When D(x) = 1 there is no distortion at all at x. We make use of
the two common measures of distortion: isometric and conformal.
Isometric distortion measures the preservation of lengths and can
be computed with Diso(x) = max {Σ(x), 1/σ(x)}. When Σ(x) =
σ(x) = 1, and only then, Diso(x) = 1, which implies that f is
close to a rigid motion in the vicinity of x. Conformal distortion,
on the other hand, measures the change in angles that is introduced
by the map f and can be calculated with Dconf(x) = Σ(x)/σ(x).
When Σ(x) = σ(x), Dconf(x) reaches its lowest possible value of
1. This indicates that, locally, the map behaves like a similarity
transformation (rigid motion with an isotropic scale).

Fold-overs. A continuously differential map f is locally injective
at a vicinity of a point x if det Jf(x) > 0. To guarantee local
injectivity, it suffices to ensure that σ(x) > 0 for all x ∈ Ω, and
det Jf(x) > 0 for a single point x ∈ Ω (in fact, one point in each
connected component of Ω). Indeed, since σ(x) > 0, we know that
det Jf(x) 6= 0, and since det Jf(x) is a continuous function of x,
it cannot change sign in a connected region. Global injectivity of
a (proper) differential map f : Ω → R2 that is locally injective is
guaranteed if the domain is simply connected and f, restricted to the
boundary, is injective.

Collocation points and the active set method. Our goal is to
control the distortion and local injectivity of the map f over the
domain Ω. To this end, we maintain a set of collocation points
Z = {zj}mj=1 ⊂ Ω, where we explicitly monitor and control the
distortion and injectivity over. That is, we ensure that

D(zj) ≤ K , σ(zj) > 0 (4)

for all j = 1, ..,m, where K ≥ 1 is a parameter. Given these
bounds on the set Z we provide bounds on the distortion and injec-
tivity of f at all points x ∈ Ω.

To allow interactive rates, we use an active set method: The con-
straints are set only on a sparse subset, the active set,Z ′ ⊂ Z . Once
a certain collocation point z violates the desired bounds in eq. (4),
it is added to the active set Z ′. Collocation points at which the dis-
tortion goes sufficiently below the desired bound are removed from
the active set. See Figure 3 for an illustration. Implementation de-
tails are provided in Section 5. A similar idea was used in [Bommes
et al. 2013], where the active set was termed lazy constraints.
It is possible to constrain the distortion at a collocation point z by
utilizing the simple observation that the Jacobian matrix of f is lin-
ear in the variables c,

Jf(x) = (∇u(x),∇v(x))T =
n∑
i=1

ci∇fi(x),

and adapting the convexification approach of [Lipman 2012] to the
meshless setting. Further details are in Section 5.
We recall that the definition of the fill distance h(Z,Ω) of the col-
location points in the domain is the furthest distance from Z that
can be achieved in Ω, namely,

h(Z,Ω) = max
x∈Ω

min
z∈Z
‖x− z‖ . (5)

Collocation
points in
this region
become
active

With distortion
constraints

Without distortion
constraints

Figure 3: Illustration of our active set approach. As the bar bends,
the distortion rises above a certain threshold, causing collocation
points in the region to become active (left). These points prevent
the bar from collapsing (middle). Excluding these points results in
a map with singularities (right).

Modulus of continuity. One of the key aspects of this paper is
the ability to ensure that the constructed maps via eq. (3) satisfy
strict requirements of distortion and injectivity. This is achieved by
estimating the change in the singular values functions σ(x),Σ(x) of
the Jacobian Jf(x) of the map f. For this, the notion of the modulus
of continuity becomes handy: It is a tool for measuring the rate of
change of a function. Specifically, a function g : R2 → R is said
to have a modulus of continuity ω, or in short, is ω-continuous, if it
satisfies

|g(x)− g(y)| ≤ ω(‖x− y‖), ∀x, y ∈ Ω, (6)

where ‖·‖ denotes the Euclidean norm in R2, and ω : R+ → R+

is a continuous, strictly monotone function that vanishes at 0. Sec-
tion 4 explains the computation of the modulus of continuity of the
singular values functions σ(x),Σ(x) and describes how to use it for
bounding the distortion of the map f. We also make use of the mod-
ulus of continuity of maps (vector valued functions) g : R2 → R2,
where similarly to the scalar case, g is ω-continuous if

‖g(x)− g(y)‖ ≤ ω(‖x− y‖), ∀x, y ∈ Ω. (7)



Figure 4: Several more examples created with our method. Due
to the smoothness of the basis functions, our method is capable of
handling pointwise constraints in a smooth and graceful manner.

4 Bounding the Distortion

The core of our approach lies in bounding the change in the distor-
tion at a point as it gets further away from a collocation point z ∈ Z .
We observe that, for many useful function bases F , given the coef-
ficients c and the domain Ω, one can compute a modulus ω = ωΣ,σ

such that the singular values functions Σ(x),σ(x) are ω-continuous.
This, in turn, allows bounding the change in the singular values.

In this section we: (i) provide the general motivation for calculating
the modulus ω of singular values; (ii) compute ω for the collection
of basis functions used in this paper; (iii) show how ω can be used
to bound the different distortion measures; and (iv) explore the dif-
ferent strategies for controlling the distortion of f over Ω.

Why ω is useful? For example, to bound σ(x) from below at all
points x ∈ Ω we assume that we have the bound σ(z) ≥ δ > 0
at all collocation points z ∈ Z . Then, if σ(x) is ω-continuous
we have |σ(x)− σ(z)| ≤ ω(‖x− z‖) and therefore in particular
σ(x) ≥ σ(z)−ω(‖x− z‖) ≥ δ−ω(‖x− z‖). Similarly, an upper
bound to Σ(x) can be found. This is described in the following
lemma:

Lemma 1. Let Σ and σ be ω-continuous functions, and let z ∈ Z
be some collocation point. Then for all points x ∈ Ω,

σ(z)− ω (‖x− z‖) ≤ σ(x) ≤ Σ(x) ≤ Σ(z) + ω (‖x− z‖) .

Computing ω for different F . Using Lemma 1 requires
knowing the modulus of continuity of the singular value functions
σ(x),Σ(x) of the map f built using an arbitrary function basis
F . Although this task might seem daunting, we show that,
surprisingly enough, for 2D maps, this problem can be reduced
to the easier task of calculating the modulus of continuity of
the Jacobian of the map f, or equivalently, the modulus of con-
tinuity of the gradients∇u and∇v, as the following lemma asserts:

Lemma 2. Let ∇u and ∇v be ω-continuous in Ω. Then both sin-
gular values functions Σ and σ are 2ω-continuous.

The proof of this lemma is given in Appendix B. This lemma is
used to compute a modulus of continuity ω = ωΣ,σ for the singular

values functions of a map f defined via eq. (3). First, we note that

‖∇u(x)−∇u(y)‖ ≤
n∑
i=1

∣∣c1i ∣∣ ‖∇fi(x)−∇fi(y)‖

≤
n∑
i=1

∣∣c1i ∣∣ω∇fi (‖x− y‖)

≤ |||c|||ω∇F (‖x− y‖) , (8)

where ω∇fi is a modulus of continuity for the gradient of the basis
function ∇fi, ω∇F is a modulus function satisfying ω∇F (t) ≥
ω∇fi(t), for all t ∈ R+ and all fi ∈ F , and we use the ma-
trix maximum-norm |||c||| = max`∈{1,2}

∑n
i=1

∣∣c`i ∣∣. Equation (8)
shows that the modulus of ∇u is ω∇u = |||c|||ω∇F . Similar argu-
ments show that ω∇v = |||c|||ω∇F . Finally, Lemma 2 tells us that

ω = 2 |||c|||ω∇F . (9)
In order to use eq. (9) to bound the change in the singular value
functions, the modulus of the gradient w∇F for the function ba-
sis of interest needs to be known. In Table 1 we summarize the
function bases that are used in this paper, as well as the moduli
of their gradients, ω∇F . In Appendix A we provide the deriva-
tions of these modulus functions. Note that the gradient modulus
ω∇F of the TPS applies only locally to points x, y ∈ R2 such that
‖x− y‖ ≤ (1.25e)−1 ≈ 0.29. However, this is not a significant
restriction, as the fill distance is always smaller in practice.

Basis fi ω∇F (t)

B-Splines B(3)
∆ (x− xi)B(3)

∆ (y − yi)
4

3∆2
t

TPS 1
2
(‖x− xi‖2) ln(‖x− xi‖2) t(5.8 + 5 |ln t|)

Gaussians exp

(
−‖x− xi‖2

2s2

)
t

s2

Table 1: Function bases and the gradient modulus function.

Bounding isometric and conformal distortion. We show be-
low how Lemma 1 and eq. (9) can be used to provide bounds on the
isometric and/or conformal distortion, assuming such bounds are
enforced at a set of collocation points Z .

We start with isometric distortion and assume that at all collocation
points z ∈ Z we have Diso(z) ≤ K, or equivalently,

Σ(z) ≤ K , σ(z) ≥ 1

K
. (10)

Denote for brevity h = h(Z,Ω), the fill distance of Z in Ω. Then
using Lemma 1 we have for all points x ∈ Ω,

Diso(x) ≤ max

{
K + ω(h) ,

1

K−1 − ω(h)

}
. (11)

This bound holds only when K−1 > ω(h), which implies that
σ(x) > 0, which in turn guarantees the injectivity of the map. Oth-
erwise, Diso(x) cannot be bounded.

To bound the conformal distortion, we assume that all the colloca-
tion points z ∈ Z satisfy a conformal distortion bound:

Σ(z) ≤ Kσ(z) , σ(z) ≥ δ, (12)

where the second constraint, with some constant δ > 0, is used
to avoid σ(x) = 0, which may lead to loss of injectivity. Using
Lemma 1 as above, for all x ∈ Ω,

Dconf(x) ≤ K
(
δ + ω(h)

δ − ω(h)

)
, σ(x) ≥ δ − ω(h). (13)

where, as in the isometric case, δ > ω(h) is required to hold.



Controlling the distortion of f. The bounds in eq. (11) and
eqs. (13) relate the distortion of the map f at all points in the do-
main Ω to the distortion K enforced on the collocation points Z
and the fill distance of the collocation points h = h(Z,Ω). Using
these relationships one can control the distortion of the map f in one
of three strategies:

1. Given Z and the distortion bound K on its points, bound the
maximal distortion Kmax of f everywhere else in Ω.

2. Given the distortion bound K enforced at the points Z and a
desired distortion bound Kmax > K everywhere in Ω, calcu-
late the required fill distance h to achieve it.

3. Given Z and a desired distortion bound Kmax > 1 every-
where in Ω, calculate the distortion bound K that should be
enforced on Z .

Strategy 1 can be accomplished directly from the bounds (11),(13).
For strategy 2 we need to rearrange these equations: noting that
ω−1 also monotonically increases we get

hiso ≤ ω−1

(
min

{
Kmax −K,

1

K
− 1

Kmax

})
(14)

hconf ≤ ω−1

(
δ
Kmax −K
Kmax +K

)
, (15)

where hiso and hconf are the required fill distances to achieve iso-
metric or conformal distortion Kmax , respectively. Note that the
inequality for the conformal distortion in particular implies that
hconf < ω−1(δ) and hence by eq. (13) that σ(x) > 0.

For strategy 3 we rearrange the bounds as follows,

Kiso ≤ min

{
Kmax − ω(h),

1
1

Kmax
+ ω(h)

}
(16)

Kconf ≤ Kmax
δ − ω(h)

δ + ω(h)
, δconf > ω(h) (17)

where Kiso,Kconf , and δconf are the distortion bound at the colloca-
tion points required to achieve the global isometric and conformal
distortion Kmax. Note again, that σ(x) > 0 is assured due to the
inequality for δconf in eq. (13).

Non-convex domains and interior distances. It is often desir-
able to consider a non-convex domain Ω, endowed with an interior
distance, and basis functions defined using this distance. The defini-
tion of the fill-distance and the modulus of continuity are changed
accordingly. The analysis above can then be used as-is once the
gradient modulus ω∇F is available, similarly to Table 1. In this pa-
per we only provide the modulus ω∇F for the Euclidean distance-
based basis functions listed in that table, leaving the analysis of
other bases to future work.

We emphasize that in case the non-convex domain is endowed with
the Euclidean distance, the analysis holds as-is for the basis func-
tions from Table 1. This is due to the fact that these basis functions
are defined everywhere in R2 and the modulus of their gradients is
agnostic to the shape of the domain. To generate a set of collocation
points with a prescribed Euclidean fill-distance in a non-convex do-
main it is enough to ask that the domain satisfies the cone condition
(see e.g., [Wendland 2004], Definition 3.6), and to consider all the
points from a surrounding uniform grid that fall inside the domain.

Source Conformal Distortion Constraints
K=2 K=3 K=4

Isometric Distortion Constraints
K=2 K=3 K=4

No Constraints

Figure 5: Deformation of a bar using various distortion constraints
using B-Splines (see Section 6 for details).

5 Optimization and implementation details

In this section we describe the algorithm for calculating maps of
the form of eq. (3), which conform to the positional constraints pre-
scribed by the user, and satisfy distortion and injectivity require-
ments. This algorithm is summarized in Algorithm 1. The theory
in Section 4 suggests replacing the optimization problem in (1)-(2)
with the following:

min
c

Epos(f) + λEreg(f)

s.t. D(f; z) ≤ K, ∀z ∈ Z,

f =

n∑
i=1

cifi,

(18)

where Epos is the energy of the positional constraints that is
changed during user interaction, Ereg is a regularization energy,
D = Diso or D = Dconf is the distortion type, and K ≥ 1 is a
user prescribed distortion bound. According to Section 4, for the
correct choice of K and Z , f is guaranteed to be injective and have
distortion smaller than Kmax. In the following, Eq. (18) is for-
mulated as a Second-Order Cone Program (SOCP), which can be
solved efficiently by an interior point method.

We remark here the positional constrains energy Epos from eq. (18)
can be replaced with hard constraints. In this case however, the
problem may be infeasible due to the distortion bound, regardless
of how the basis functions are chosen. This can occur if, for exam-
ple, the isometric distortion is required to not exceed a value of K,
but two handles are pulled apart by a factor greater than K. In an
interactive session, this means that the deformation will not update
until the handles are put back in acceptable positions, which can
become a nuisance to the user.



Activation of constraints. During interaction, eq. (18) is solved
constantly as the user manipulates the handles. At each optimiza-
tion step, only a fraction of the collocation points is active, so re-
moving the rest of the collocation point will not change the result,
but will greatly reduce the computation time. In the following, we
devise an algorithm that utilizes this fact, where collocation points
may be inserted or removed from the active-set before each step.

The algorithm should make the interaction as smooth as possible;
the distortion at any deactivated collocation point should not sud-
denly become significantly greater than K at any given step. Oth-
erwise, at the next step, the point will become active, which will
cause the deformation to ”jump”. Therefore, we opt to insert points
into the active-set when the distortion on them is slightly below
K. We assume that the collocation points are sampled on a dense
rectangular grid. Before each optimization step, the distortion on
each collocation point is measured, and the local maxima of the
distortion are found. If a local maximum has a distortion greater
than Khigh for a specified Khigh ∈ [1,K], then that point is added
to the active-set for the next optimization step. If any collocation
point has distortion lower thanKlow whereKlow ∈ [1,Khigh], then
that point is removed from the active-set. This ensures that the col-
location points with the maximal distortion are always active, and
hence all other collocation points must have distortion smaller than
K. To further stabilize the process against fast movement of the
handles by the user, we may keep a small subset of equally spread
collocation points always active. In our implementation we used
the default values Khigh = 0.1 + 0.9K and Klow = 0.5 + 0.5K.
See Figure 6 for examples.

During an interactive session, potentially all of the collocation
points can become active at once. However, this does not occur in
practice, since only points that are above a threshold and are local
maxima of the distortion can be activated. Thus, only a small num-
ber of isolated points will be activated at each iteration. The only
scenario in which all collocation points are activatd simultaneously
is when the distortion is constant everywhere when it crosses the
distortion bound threshold. This scenario is extremely unlikely due
to nature of the deformation energy and the bases functions used.

Figure 6: Active-set visualization. The yellow dots represent the
positions of the activated collocation points for the deformation
shown. Note that some of the points remain activated throughout
to stabilize the process.

Distortion and injectivity constraints. We explicitly constrain
the points in the active-set according to eq. (10) or (12). This re-
quires constraining the singular values of the Jacobian Jf(z) for all
z ∈ Z . We provide a new formulation to the convex second-order
cone constraints described in [Lipman 2012], where the singular
values of the Jacobian of the map f are expressed in terms of the
gradients of f (i.e., ∇u and ∇v), which is compact and useful for
proving Lemma 2 (see Appendix B).

We define two vectors, JSf(x) and JAf(x), corresponding to the
similarity and anti-similarity parts of Jf(x), as follows

JSf(x) =
∇u(x) + I∇v(x)

2

JAf(x) =
∇u(x)− I∇v(x)

2

. (19)

Here I is the counter-clockwise rotation 2 × 2 matrix by π/2. It
can be shown (see e.g. [Lehto and Virtanen 1973], ch. I.9, p. 49)
that the singular values of Jf(x) can then be expressed as

Σ(x) = ‖JSf(x)‖+ ‖JAf(x)‖

σ(x) =
∣∣∣‖JSf(x)‖ − ‖JAf(x)‖

∣∣∣. (20)

The requirement (10) for the isometric distortion can be written in
terms of JSf and JAf, which are linear in c. Eq. (10) then becomes

‖JSf(xi)‖+ ‖JAf(xi)‖ ≤ K (21)

‖JSf(xi)‖ − ‖JAf(xi)‖ ≥
1

K
, (22)

where eq. (21) can be transformed into convex cone constraints,

‖JSf(xi)‖ ≤ ti (23a)
‖JAf(xi)‖ ≤ si (23b)
ti + si ≤ K, (23c)

where ti, si are auxiliary variables. However, trying to apply a sim-
ilar transformation to eq. (22) will result in the non-convex cone-
complement constraint,

‖JSf(xi)‖ ≥ ri, (24)

for an auxiliary ri. Following Lipman’s [2012] approach, eq. (24)
can be convexified by introducing the notion of frames. A frame is
a unit vector di used to replace eq. (24) by

JSf(xi) · di ≥ ri. (25)

JSf(x) r

r

JSf(x) · d ≥ r

d

r

Eq. (25) is a half plane that is contained in the cone-
complement of eq. (24) (see inset). Using (25), we
can replace (22) with

JSf(xi) · di − si ≥ 1

K
, (26)

noting that ri is actually redundant. We also note
that this constraint forces the determinant to be pos-
itive.

The optimal choice of di at a certain optimization
step depends on the value of JSf(xi) at the previous step. We
would like the boundary of the half plane defined by di to be as
far away as possible from JSf(xi) of the previous step to allow
maximum maneuverability for the next step. This is achieved by
setting

di = JSf(xi)/ ‖JSf(xi)‖ (27)

after each step. For the conformal distortion case we write the con-
straints as in [Lipman 2012] in our notation:

‖JAf(xi)‖ ≤ K − 1

K + 1
JSf(xi) · di (28a)

‖JAf(xi)‖ ≤ JSf(xi) · di − δ. (28b)



Initialization of the frames. In [Lipman 2012], the frames had to
be picked correctly to guarantee feasibility. However, here, matters
are simpler. Firstly, by using soft positional constraints we ensure
that a solution always exists. Although the choice of frames may
not be optimal in the first iteration, it will improve in subsequent
steps. Secondly, the interaction usually starts from a rest pose, so
the trivial solution has the identity as the Jacobian for each colloca-
tion point, and hence satisfies any distortion bound. To include the
trivial solution in the feasible set we set the frames to be di = (1, 0)
for all di.

Deformation energies and positional constraints. The energy
Epos(f) for the positional constraints in eq. (18) is defined by

Epos(f) =
∑
l

‖f(pl)− ql‖ =
∑
l

∥∥∥∥∥
n∑
i=1

cifi(pl)− ql

∥∥∥∥∥ (29)

where {pl}
nl
l=1 and {ql}

nl
l=1 are the source and target positions of

the handles. We choose to this energy instead of the more common
quadratic energy since it is more natural in the SOCP setting, al-
though a quadratic energy can be used as well (by adding another
cone constraint). Minimizing this energy is equivalent to minimiz-
ing,

min
∑
l

rl

s.t.

∥∥∥∥∥
n∑
i=1

cifi(pl)− ql

∥∥∥∥∥ ≤ rl,∀l
(30)

where rl are auxiliary variables. Eq. (30) is an SOCP, which can be
combined with the distortion constraints of the previous paragraph.

As for the regularization energy Ereg, we use a combination of two
common functional: the biharmonic energy, Ebh and the ARAP
energy, Earap. The biharmonic energy is defined by

Ebh(f) = Ebh(u, v) =

∫∫
Ω

‖Hu(x)‖2F + ‖Hv(x)‖2F dA, (31)

where Hu and Hv are the Hessians of u and v, respectively, which
is a quadratic form in c. Once c is taken out of the integral, the in-
tegration can be done by numerical quadrature. The ARAP energy
is defined by the standard sum,

Earap(f) =

ns∑
s=1

‖Jf(rs)−Q(rs)‖2F , (32)

where {rs}ns
s=1 are a set of equally spread pre-defined points, and

Q(rs) is the closest rotation matrix to Jf(rs). Due to the non-
convexity of eq. (32), incorporating it in an optimization problem
usually requires a local-global approach in order to solve it (see
[Liu et al. 2008]). Using the frames, it can be seen that eq. (32) can
be solved via the quadratic functional,

Earap(f) =

ns∑
s=1

(
‖JAf(x)‖2F + ‖JSf(x)− ds‖2F

)
(33)

where ds is the frame at rs.

Algorithm 1: Provably good planar mapping
Input:

Set of positional constraints {pl}
nl
l=1 and {ql}

nl
l=1

Set of basis functions fi ∈ F
Grid of collocation points Z = {zj}mj=1

Distortion type and bound on collocation points K ≥ 1
Output:

Deformation f

Initialization:
if first step then

Precompute fi(z) and∇fi(z) for all z ∈ Z .
Set di = (1, 0) for all di.
Initialize empty active set Z ′.
Initialize set Z ′′ with farthest point samples.

Evaluate D(z) for z ∈ Z .
Find the set Zmax of local maxima of D(z)
foreach z ∈ Zmax such that D(z) > Khigh do

insert z to Z ′
foreach z ∈ A such that D(z) < Klow do

Remove z from Z ′

Optimization:
Solve the problem in (18) using the SOCP formulation to find c.
Use the constraints from eq. (23) and eq. (26) for the isometric
case, and those of eq. (28) in the conformal case on the collocation
points in Z ′ ∪ Z′′ . Use energies from eq. (30), (31), and/or (33).

Postprocessing:
Compute f using c and F .
Update di using eq. (27).

Return:
Deformation f

6 Results

Software implementation and timing. We have implemented
an interactive software using Algorithm 1. We used Mosek [Ander-
sen and Andersen 1999] for solving the optimization problem, and
Matlab for updating the active-set. In addition, we used an external
OpenGL application to interact and show the deformation. We used
a machine with Intel i7 CPU clocked at 3.5 GHz. The included
video shows an interactive session using our software. Figure 7
shows timings for solving the optimization problem using Mosek
as a function of the number of basis functions and the size of the
active-set. For this range, which covers the results in this paper,
the time complexity exhibits linear behaviour. In all of our experi-
ments we used a 2002 grid of collocation points during interaction,
and after being satisfied with the results switched to higher grid res-
olutions using Strategy 2 to guarantee the bounds on the distortion.
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Figure 7: Graphs showing the time required for the optimization
as a function of the number of active collocation points and the
number of basis function. Note the linear behaviour.



Source Isometric distortion=5

No bounds Isometric distortion=3

Figure 8: Deformation of a square using TPS. Note the fold-over
that caused the subsquare in the middle to disappear in the un-
constrained case, and compare to the bounded isometric distortion
results on the right.

Parameters and function bases. Our approach is quite versatile
as the different function bases, and the distortion type and bound
already attain a large variety of different results. We present a set of
examples that we believe should advocate the use of our approach.

In Figure 5 we show an example of a deformation of a bar using a
6 by 6 tensor product of uniform cubic B-Splines using the energy
Ereg = Epos + 10−2Earap. Note that for the lower values of K,
the positional constraints cannot be satisfied. Also note that with
no distortion constraints, the deformation creates two singularities,
which were unintended and undesired. Using strategy 3 we found
that in order to achieve injectivity for all cases, it was enough to
check the distortion on a grid of size 30002. For this grid we found
that for K = 2, 3, 4 , the maximal distortion was guaranteed to be
smaller than 3.2, 10 and 49 in the isometric case respectively, and
14, 35 and 33 in the conformal case.

In Figure 8 we show additional examples of deformations of a
square to demonstrate the effectiveness of our method for warping.
Using TPS this time, with 25 bases positioned on a grid, we rotated
two points in the middle while keeping some points on the bound-
ary fixed. We used the smoothness energy Epos + 10−1Ebh. In
this case, the unconstrained map resulted in a fold-over that made
the sub-square in the middle completely disappear, while the con-
strained maps stayed bijective. The required grid size that provides
the injectivity certification for K = 5 in this example was slightly
less than 60002. For this resolution, the computation shows that for
K = 3, the maximal distortion everywhere is smaller than 7.

Mesh-based vs. Meshless. We compared our results with the
results of previous similar mesh-based methods. In Figure 9 we
show a bird image deformed with a variant of the ARAP method
of Igarashi et al. [2005] as implemented in Adobe Photoshop. We
compare this result to the meshless approach using ARAP energy

Meshless ARAP with D <5Iso

Source Mesh ARAP

Meshless ARAP

Figure 9: Deformation of a bird drawing. The unconstrained mesh
deformation resulted in an unpleasant cusp, while the yellow tri-
angle in the unconstrained meshless deformation (in the blow up)
almost vanished. The constrained meshless deformation avoided
these problems.

with and without the distortion constraints. One of the main dif-
ficulties with mesh-based ARAP, which can be seen in Figure 9,
is that when the object is forced to undergo a deformation that
is not close to being locally rigid, cusps with fold-overs appear
near the handles. This cannot happen when the basis functions are
smooth, but even then the ARAP functional creates fold-overs and
unbounded distortion. This is rectified by incorporating the distor-
tion constraints. In this example, the required grid size to ensure
injectivity was also 60002.

In Figure 10 we deform a disk (see inset)
using the method of [Schüller et al. 2013]
and [Lipman 2012] and compare it to ours
using Diso = 5. Both mesh-based methods
guarantee injectivity, as our method does,
but it is clearly seen they lack smoothness,
in contrast to our approach. In this example,
a grid of 20002 collocation points proves
the map is injective. By evaluating the distortion on 40002 points
we show that the maximal isometric distortion is smaller than 10.

Figure 10: Deformation of a disk. Note the lack of smoothness in
both mesh-based methods.



Shape aware bases. The previous results show deformations us-
ing the Euclidean distance-based function bases provided in Table
1. For non-convex domains endowed with an internal distance, it
is better to use bases that are shape aware, namely, their influence
obeys internal distances. Many possibilities exist in the literature,
e.g., the shape function used in [Adams et al. 2008], or any smooth
set of generalized barycentric coordinates. In our experiments we
tested shape aware variation of Gaussians, which is achieved by
simply replacing the norm in their definition with the shortest dis-
tance function. Figure 11 shows such a deformation and compare
it again to [Schüller et al. 2013]. Although their method does not
allow fold-overs to occur, cusps can still be seen where the handles
are. Figures 1,2,4 also demonstrate deformations with this basis
function. To provide a proof of injectivity and/or bounded distor-
tion for these examples the modulus of the gradients of the Gaus-
sian shape-aware functions, ω∇F , should be calculated. Although
straightforward, it is cumbersome to compute it in general, and we
defer it to future work. Lastly, we note that the deformations are
as smooth as the basis functions. Using exact shortest distances
(which is done here for simplicity) in a non-convex polygonal do-
main will have discontinuous derivatives at certain points in the do-
main, but nevertheless produce visually pleasing results.

Source Sub-steps

[Schueller 2012] Ours

1 2 3

Figure 11: Deformation using 40 shape aware Gaussians and iso-
metric distortion constraint of Kiso ≤ 3. Top row shows intermedi-
ate positions of the handles and the respective deformations. Bot-
tom row compares the final deformation with [Schüller et al. 2013]
(using the same handle positions, not shown). Note the cusps that
occur at the handles when using Schüller’s method.

7 Discussion
This paper presents a framework for making general smooth ba-
sis functions suitable for planar deformations. The framework is
demonstrated with three popular function bases and the algorithm
is shown to allow interactive deformations. The paper provides the-
ory that allows establishing guarantees of injectivity and bounds of
isometric and/or conformal distortion.

Our theory and bounds rely on the simple expressions of the sin-
gular values of the Jacobian. These expressions are true only in
the case of two dimensional domains, and therefore our method is
not trivially extended to three dimensions. However, this is the only
missing requirement for the transition into higher dimensions, since
other key ingredients, such as the use of collocation points and ac-
tive set remains the same. If this gap can be bridged, we believe
that smooth maps with controlled distortion can also be generated
in 3D using our approach.

One limitation of the convexification approach we used occurs
when enforcing hard positional constraints: if the problem is re-
ported as infeasible in this case, one cannot tell whether this is due
to the non-convex problem being infeasible or to the frames not
being chosen correctly. This limitation is alleviated either by us-
ing soft positional constrains as explained in the paper, or by look-
ing for appropriate frames using some other method (e.g., taking
the global unconstrained minimum of the functional and extracting
frames from it). In any case the question of feasibility when hard
constraints are used is still an open problem.

While the map computation is done interactively, proving its injec-
tivity and bounding its distortion may require a more time, espe-
cially if the bounds are strict and/or the deformation is strong. This
is due to the very dense grids required by the theoretical bounds.
Although the task is simple - all that is required is evaluate the dis-
tortion on every point of the grid - our current serial implementation
allows supporting this computation interactively only on medium
sized grids (40k points). However, we believe that using GPU to
evaluate the distortion on the collocation points in parallel may en-
able interactive rates for large grids.

Our results show that, by using a generic SOCP solver (Mosek),
our approach can handle a few hundreds of active collocation points
and basis function at interactive rates. However, there may be situ-
ations where thousands or more are required. Developing a special-
ized solver for this task can allow such large problems to be solved
quickly.

One long standing problem, is how to find bijections between fixed
domains. One approach is to use barycentric coordinates, e.g.
[Floater and Kosinka 2010; Schneider et al. 2013]. We wish to
explore the possibility of using our method with certain barycentric
coordinates as basis function to find maps between domains.
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Appendix A

In this appendix we compute the modulus ω∇F of the basis func-
tions used in this paper as detailed in Table 1. Excluding Thin-
Plate Splines, the modulus of all the basis functions (B-Splines and
Gaussians) is of the standard Lipschitz type: ω∇F (t) = Lt, where
L > 0 is called the Lipschitz constant.

We start by formulating a small lemma that would be of help in
calculating the modulus for the Lipschitz case:

Lemma 3. Let g : Ω ⊆ R2 → R be a C2 function, where Ω is a
convex domain. Then∇g is L-Lipschitz with

L ≤ max
x∈Ω
‖Hg(x)‖2, (34)

where Hg is the Hessian matrix of g and ‖Hg(x)‖2 denotes the
operator 2-norm of the Hg(x).

Proof. Let x, y ∈ Ω and let γ(t) = (1 − t)x + ty, t ∈ [0, 1] be
the straight path between x and y, with constant speed and length
‖x− y‖. Then

∇g(y)T −∇g(x)T =

∫ 1

0

Hg(γ(t)) · γ′(t) dt, (35)

Hence,

‖∇g(x)−∇g(y)‖ =

∥∥∥∥∫ 1

0

Hg(γ(t)) · γ′(t) dt
∥∥∥∥ (36)

≤
∫ 1

0

‖Hg(γ(t))‖2 ·
∥∥γ′(t)∥∥ dt (37)

≤ ‖x− y‖max
x∈Ω
‖Hg(x)‖2. (38)

B-splines. We use tensor product of uniform cubic B-splines in
this paper. The uniform univariate cubic B-spline B(3)(x) is clas-
sically defined on the interval [0, 4], with knot spacing equal to one
by,


1
6
x3 0 ≤ x ≤ 1

1
6

(
x3 − 4(x− 1)3

)
1 ≤ x ≤ 2

1
6

(
(4− x)3 − 4(x− 3)3

)
2 ≤ x ≤ 3

1
6

(4− x)3 3 ≤ x ≤ 4

. (39)

Uniform cubic B-splines on longer knot vectors are just shifted
copies of B(3)(x). For our purposes, we use scaled versions of
B(3)(x), which we define by B(3)

∆ (x) = B(3)( x
∆

). The tensor prod-
uct is then defined by B(3)

∆ (x)B(3)
∆ (y). By direct computation we

can see that ‖Hfi(x)‖2 ≤
4

3∆2 for all x ∈ R2 and by Lemma 3 we
have that ω∇F (t) = 4

3∆2 .

Gaussians are examples of radial basis functions [Wendland
2004] defined via fi(x) = exp

(
− ‖x−xi‖2

2s2

)
, where xi ∈ Ω are

called centers, and s > 0 is a constant controlling the width of
the Gaussian. Without loosing generality we assume xi = 0,
and, again, direct calculation shows that ‖Hfi(x)‖2 ≤

1
s2

for all
x ∈ R2, and therefore by Lemma 3 we have ω∇F (t) = 1

s2
t.

Thin-Plate Splines (TPS) are also radial basis functions de-
fined via fi(x) = 1

2
‖x− xi‖2 ln ‖x− xi‖2. The gradients are

∇fi(x) = (x− xi)
[
1 + ln ‖x− xi‖2

]
. We show that the situ-

ation with TPS is slightly more complicated than with the other

bases described above and that their gradients ∇fi are locally al-
most Lipschitz in the sense that the modulus function is of the form
ω∇F (t) = t(5.8 + 5 |ln t|), for 0 ≤ t ≤ (1.25e)−1 ≈ 0.29.
That is, it applies only when ‖x− y‖ ≤ (1.25e)−1. However, this
limitation is not important as our fill-distance is in practice always
(much) smaller than this constant, and therefore we always apply
the modulus of continuity to smaller distances. We mention that
although we expected this result to be known, we could not find it
or an equivalent result in existing literature so we prove it here.

We assume w.l.o.g. that xi = 0, set τ = 1.25 and recall that we
assume ‖x− y‖ ≤ (τe)−1. First,

‖∇fi(x)−∇fi(y)‖ ≤ ‖x− y‖+
∥∥x ln ‖x‖2 − y ln ‖y‖2

∥∥ . (40)
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Focusing on the second term,
we observe two cases: (i)
max {‖x‖ , ‖y‖} ≤ τ ‖x− y‖
(e.g., left in inset); and (ii)
max {‖x‖ , ‖y‖} > τ ‖y− x‖
(e.g., right in inset).

For case (i), note that the function g(t) = t
∣∣ln t2∣∣ is monotonically

increasing for t ∈ [0, e−1] and therefore we can replace ‖x‖ , ‖y‖
with τ ‖x− y‖ ≤ e−1, as follows,∥∥x ln ‖x‖2 − y ln ‖y‖2

∥∥ ≤ ‖x‖ ∣∣ln ‖x‖2∣∣+ ‖y‖
∣∣ln ‖y‖2∣∣

≤ 2τ ‖x− y‖
∣∣ln τ2 ‖x− y‖2

∣∣ .
Combining this with eq. (40) we get after rearranging,

‖∇fi(x)−∇fi(y)‖ ≤ ‖x− y‖
[
1 + 2τ

∣∣∣ ln τ2
∣∣∣+ 2τ

∣∣∣ ln(‖x− y‖2
∣∣∣] .

For case (ii), the bound (38) in the proof of Lemma 3 can be refined
a bit: Instead of taking the maximum of ‖Hw(x)‖ over all x ∈ Ω,
one can take the maximum over all the points {γ(t)|t ∈ [0, 1]}. In
our case, this is the straight line (1 − t)x + ty. We assume that
max {‖x‖ , ‖y‖} > τ ‖x− y‖, and therefore it can be shown that
‖(1− t)x + ty‖ ≥ (τ − 1) ‖x− y‖ for all t ∈ [0, 1] (e.g., by
bounding the distance ‖((1− t)x + ty)− y‖). A direct computa-
tion shows that ‖Hfi(x)‖2 ≤ 3 +

∣∣ln ‖x‖2∣∣. Therefore,

‖Hfi(x)‖2 ≤ 3 +
∣∣∣ ln(τ − 1)2 ‖x− y‖2

∣∣∣,
on the line (1 − t)x + ty, t ∈ [0, 1].The refined version described
above of the bound (38) implies that

‖∇fi(x)−∇fi(y)‖ ≤ ‖x− y‖
[
3 +

∣∣∣ ln(τ − 1)2
∣∣∣+
∣∣∣ ln ‖x− y‖2

∣∣∣] .
Plugging in τ = 1.25 and combining the two cases we get:

‖∇fi(x)−∇fi(y)‖ ≤ ‖x− y‖
[
5.8 + 5

∣∣∣ ln ‖x− y‖
∣∣∣] .

Appendix B

We prove Lemma 2:
Lemma 2. Let ∇u and ∇v be ω-continuous in Ω. Then both
singular values functions Σ and σ are 2ω-continuous.

Proof. The key to the proof is in eqs. (19) and (20). From (19) we
find that a modulus of continuity for both vector valued functions
(maps) JSf and JAf is ω, by noting that the sum (or difference)
of ω-continuous maps is 2ω-continuous. By the triangle inequality
their norms are also ω-continuous. Using eq. (20) we thus reach
our conclusion.


