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Abstract—Polyhedral meshes (PM)—meshes having planar faces—have enjoyed a rise in popularity in recent years due to their

importance in architectural and industrial design. However, they are also notoriously difficult to generate and manipulate. Previous

methods start with a smooth surface and then apply elaborate meshing schemes to create polyhedral meshes approximating the

surface. In this paper, we describe a reverse approach: given the topology of a mesh, we explore the space of possible planar meshes

having that topology. Our approach is based on a complete characterization of the maximal linear spaces of polyhedral meshes

contained in the curved manifold of polyhedral meshes with a given topology. We show that these linear spaces can be described as

nullspaces of differential operators, much like harmonic functions are nullspaces of the Laplacian operator. An analysis of this operator

provides tools for global and local design of a polyhedral mesh, which fully expose the geometric possibilities and limitations of the

given topology.

Index Terms—Polyhedral meshes

Ç

1 INTRODUCTION

PM’S, i.e. meshes with planar faces, have gained popular-
ity in recent years due to several new methods that ren-

der their construction relatively easy. Typically, a designer
creates a traditional free-form surface and then applies a
meshing scheme that generates an approximating mesh
consisting of only planar faces. Naturally, the focus of these
schemes, e.g. [15], [28], is to generate good approximations,
and this is done using very specific (regular) types of mesh
topologies. It may well be that these are the only topologies
that can approximate general smooth surfaces well. How-
ever, the topology of the mesh itself has its own artistic
value: a triangular meshing of a surface will not have the
same ”look” as a quad or hex meshing. Yet, as mentioned,
the cases where a smooth surface can be faithfully meshed
into a PM are limited. Hence, we propose a different strat-
egy: instead of constructing the final PM based on a design
of a surface, we explore the space of possible PM’s with
a given topology. Such a PM is called a realization of
the topology.

Our goal is to gain quick and intuitive understanding of
the manifold that is attached to mesh topology designed by
the user. Our approach is based on the observation that the
complicated manifold of PM’s with a given topology can be
decomposed into overlapping, linear spaces, each of which
is maximal—adding a base PM to the space will introduce
non-PMs to the space. The advantage of linear spaces lies in
the simplicity of exploring them: PM’s in such a space may
be designed by forming linear combinations of a spanning
set of basic PM’s. The disadvantage is that the dimensional-
ity of these spaces is much smaller than that of the complete
manifold of PM’s. Thus, showing that they are indeed

maximal is crucial. By switching between spaces, it is possi-
ble to reach any PM in the manifold. We will refer to the
PM’s of a spanning set simply as shapes.

The use of linear spaces can be incorporated into well-
known mesh deformation methods, such as as-rigid/simi-
lar-as-possible [12]. In addition, we propose three types of
shapes aiming at different levels of design, exposing the
possibilities and limitations for deforming a given PM; the
reason for their names will subsequently become clear.
Eigenshapes are globally smooth shapes at different frequen-
cies akin to the eigenvectors of the Laplacian. Sparse shapes
are based on the smallest groups of vertices that can move
together without impairing the planarity of the faces of
the PM. Finally, fundamental shapes allow a single vertex to
be moved with minimal change to other vertices while pre-
serving planarity.

1.1 Related work

Meshing and planarization. The creation of polyhedral meshes
is an active field of research. The most common problem is
to mesh, or remesh, a free-form into a PM. The approach
used by Cohen-Steiner et al. [5] is to try to fit a limited num-
ber of planes to the surface and then intersect them. The sur-
face is first partitioned into a user-defined number of almost
flat regions, for each of which a plane is fitted. These planes,
called shapes proxies, will generally not have well-defined
intersection points. Thus, the faces they produce are only
close to being planar. Cutler and Whiting [6] added an itera-
tive optimization process to the algorithm that guarantees
that the resulting faces are planar.

In both of these systems, the user can control the number
of faces and their density in the result, but cannot dictate
the mesh topology (its edge structure), which can essentially
be arbitrary. While this is not necessarily a drawback, in
some cases a regular mesh is desirable. Liu et al. [15] and
Wang et al. [26] showed how a surface may be meshed into
a planar quad-dominant (PQ) mesh and a planar hexagonal
(P-Hex) mesh, respectively. The two algorithms are quite
similar: an almost polyhedral mesh is first generated from
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the surface, based on differential geometric entities (PQ
meshes are based on conjugate networks and P-Hex meshes
on the Dupin indicatrix. Zadravec et al. [28] and Liu et al.
[16] elaborated on how to design better conjugate net-
works.) A subsequent step involves the planarization of the
result: a non-linear optimization, where the vertices of the
mesh are repositioned to make the faces planar. This latter
step seems to dominate the runtime, and does not scale well
with mesh size. Alexa and Wardetzky [2] demonstrated the
construction of a Laplacian operator on non-triangular
meshes. As a side effect of their construction, they were able
to devise a related operator that measures the planarity of
faces. With this new operator, they obtained a planarizing
flow, that is, a geometric flow that flattens faces. In Poranne
et al. [17], a local/global based alternating algorithm was
used to solve the planarization problem very efficiently.
The improved performance enables interactive deformation
of PM’s.

Mesh deformation. The problem of editing and deforming
mesh geometry is one of the most studied topics in geome-
try processing. Most mesh deformation methods are
intended to work exclusively with triangle meshes. See [4]
for a thorough introduction. These methods may be classi-
fied into two types, based on the type of user interaction
employed. In the first type, the user directly modifies the
surface using one of common design metaphors. The most
relevant to us are the handle-based methods (e.g. [3], [12],
[20], [21]), where the user controls the deformation by mov-
ing a small number of points on the mesh. These points gen-
erate constraints for an optimization problem, whose
solution is the deformed mesh. Other common design meta-
phors includes skeleton-based and cage-based. Jacobson
et al. [13] noted the differences between these methods and
provided a hybrid method incorporating both. More intri-
cate approaches for mesh deformation use direct control of
the mesh normal and curvature instead of vertex positions
[7], [8].

Handle-based deformation has also been used in the
context of PM’s. In [27], the manifold of polyhedral meshes
was discussed in detail. The idea was to approximate this
manifold by an osculate, which is much easier to explore.
In this framework, deformation of a PM using positional
constraints was made possible; however, computing the
osculate is time-consuming and the deformation only
approximately preserves the planarity of faces. Zhao et al.
[29] use the same technique to derive a curve-based
deformation.

In [25], Vaxman described a linear space of PM’s by
allowing affine transformations per face. He proposed to
use the space of affine transformations instead of the entire
manifold, simplifying the math considerably. In fact, this
space is a special case of the linear spaces to be described in
this paper. The main drawback of using this space is its
small number of degrees of freedom (dimension). For exam-
ple, the number of degrees of freedom of a quad PM is
about half the size of its boundary, so when the mesh has
no boundary, only the trivial, global, transformations are
possible (i.e. global affine maps). Hexagonal PM’s will have
only 12 degrees of freedom, regardless of the existence of a
boundary. In other words, specifying the geometry of four
vertices of a PM with hexagonal topology uniquely

determines the rest of the PM. Pottmann et al. [18] described
another linear space of PM’s, called parallel meshes. It is
also a special case of the spaces to be described in this paper.

A second type of mesh deformation is indirect. These
include various methods that improve the quality of a
mesh, such as smoothing and enhancing features. More rel-
evant to us are methods that are used to add variation to a
mesh, or to create a collection of meshes based on a single
mesh (e.g. [24]). Yang et al. [27] have also contributed an
indirect deformation approach, by designing a user inter-
face which allows to traverse the osculate with ease. In this
paper we propose eigenshapes as a way of indirectly adding
variation to a PM.

1.2 Contribution and Overview

We extend the work of Vaxman [25] by providing a theoreti-
cal characterization of the maximal linear spaces covering
the manifold of PM’s. In Section 2 we discuss linear spaces
of PM’s in detail, characterize all of the possible maximal
linear spaces, and show how to construct them. In Section 3
we employ this theory to describe a number of meaningful
ways for editing PM’s. In Section 4 we discuss practical con-
sideration and limitation of this methodology.

2 LINEAR SUBSPACES

Preliminaries. In our context, a mesh is defined by a list of
vertex geometry and a list of faces. The vertex geometry can
be arranged in a 3�NV matrix, where NV is the number of
vertices. We will usually denote this matrix by an upper-
case letter, such as X or Y and the positions of the vertices
in boldface. For example, the vertex geometry is given by

X ¼ ðx1;x2; . . . ;xNV
Þ;

where xi are column 3-vectors. We denote by F ¼ ff jgNF
j¼1

the set of faces of the mesh, where each face is described as
an ordered (oriented) list of vertices. F will be common to
meshes that share the same connectivity, and we will refer
to them only by their vertex matrices. We will also denote
the coordinates of the vertices of the face f 2 F , which is a
submatrix ofX, byXf .

The generation of subspace V requires a single realiza-
tion Y of F , and that each face is designated a type out of

three types. We denote this designation by T ¼ ftjgNF
j¼1,

where tj encode the types to be defined later. We call the
triplet C ¼ Y; F; Tð Þ the configuration for V . Our first task is
to find a description of a linear subspace of PM’s based on
the configuration. This will be given as the solution space of

MC vecðXÞ ¼ 0; (1)

where MC is a matrix that depends on the configuration
C only, and vecðXÞ is a (column) vectorization ofX. In other
words, the linear subspace will be the null space of MC. In
the following, we will also encounter intermediate systems
such as MLX ¼ 0 and XMR ¼ 0 for some matrices ML;MR.
These systems are substantially different—the former oper-
ates on each face separately while the latter operates on
each coordinate across all faces—but they can both be writ-
ten in the form of Eq. (1).
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Manifolds of meshes. When two meshes have the same
topology, their linear combination can be defined simply as
a linear combination of their vertex geometries. In other
words, two meshes X and Y span a linear subspace of
meshes defined by

aX þ bY; a;b 2 R:

We can consider the set of all meshes with NV vertices and a

given topology to be vectors in R3NV . The dimension of this

space is 3NV and is isomorphic to R3NV .
Linearly combining two meshes is meaningful because

the set of all possible meshes (with a given topology) is a lin-
ear space. PM’s, on the other hand, reside in a complicated,
curved submanifold in this space. Linearly combining two
PM’s will usually not result in a PM, which is the cause of
many of the problems in designing them. It so happens that
the manifold of PM’s may be covered by linear submanifolds,
which we discuss next. By replacing the non-linear con-
straints defining the manifold of PM by linear ones, many
of the problems related to PM design disappear. We empha-
size an important point that the dimensions of the linear
subspaces are much smaller than 3NV , so making sure that
a linear subspace contains the largest possible part of the
space is crucial. We make a formal definition as follows:

Definition 1. A linear subspace V of polyhedral meshes is called
maximal if for any X =2 V the space V þ span Xf g contains
non-polyhedral meshes.

Centering. To make the discussion easier, all the faces of the
mesh will be centered, namely, their centroids will be
moved to the origin. This will not harm our claims, since
centering is a linear operation that preserves planarity.
Indeed, ifXf are the vertices of an uncentered face f , then,

Xc
f ¼ XfJ ¼ Xf I � 1

n
E

� �
; (2)

is centered, where J :¼ I � 1
nE is the centering matrix, I and

E are the identity matrix and matrix of ones respectively,

both are n� n square matrices, and n is the number of verti-
ces in the face.

Conditions for linear subspaces. To investigate the linear
subspaces of PM’s we first examine the linear subspaces
of much simpler entities: planar polygons. We will
assume that the polygons are not degenerate, since while
degenerate polygons have a place in this theory, they do
not appear in practice, and therefore cause an unneces-
sary complication.

Lemma 1. Let F ¼ ff g be a mesh with a single face f with
k > 3 vertices. Let X and Y be two 3� k matrices repre-
senting two geometries of F , both being planar k-gons in

R3, and let Xc and Y c be their centerings. Let nX and nY

be the unit ð1� 3Þ row vectors normal to the planes defined
by X and Y respectively. Then X and Y span a linear sub-
space of planar polygons iff at least one of the following
holds:

Fig. 1. A polyhedral mesh constructed from a planar graph using maximal linear subspaces.

Fig. 2. Deforming the (gray) PM in various linear subspaces. Each result
is not achievable in the other two subspaces.
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� Relationship of type 1. Xc is an affine transformation
of Y c : Xc ¼ AY c for some 3� 3 matrix A.

� Relationship of type 2. There exists a scalar d such that
nY X

c ¼ dnXY
c (3)

Proof. By definition,

nXX
c ¼ nY Y

c ¼ 0; (4)

where 0 is the zero vector. First assume that X and Y
span a linear subspace of planar polygons, which also
means so does Xc and Y c. Then every linear combination
ofX and Y (andXc and Y c) defines a plane and therefore
has a normal vector. In other words, for each a and b,
there exists a vector na;b such that

na;bðaXc þ bY cÞ ¼ 0: (5)

Consider the set of normal vectors na;b;a;b 2 R. There
are two possibilities for the dimensionality of the set:

Case 1. The set has three dimensions. Then there exist
nk ¼ nak;bk ; k ¼ 1; 2; 3 such that the nk’s are not collinear.

We denote by an½ � the 3� 3 matrix whose rows are aknk

and similar for bn½ �. By eq. (5), we can write

an½ �Xc ¼ � bn½ �Y c: (6)

Since the ni’s are linearly independent, we can invert an½ �
and get

Xc ¼ � an½ ��1
bn½ �Y c: (7)

Hence, Xc is an affine transformation of Y c, which is a
relationship of type 1.

Case 2. The set of normals has dimension less than 3.
Then this set must be spanned by nX and nY . Thus, for
each a;b there exist a; b such that we can write (5) as

ðanX þ bnY ÞðaXc þ bY cÞ ¼ 0: (8)

Expanding the LHS and using (4) we obtain

nY X
c ¼ � ab

ba
nXY

c; (9)

which, noting that ab
ba is a constant, is the relationship of

type 2, and this concludes the first direction of the proof.
In the other direction, first assume that X and Y are

planar and Xc is an affine transformation of Y c (type 1
relationship). Due to the planarity, the rank of each of the
matrices Xc and Y c is 2. Furthermore, there exists a 3� 3
matrix A such thatXc ¼ AY c. Hence, their combination

aXc þ bY c ¼ ðaAþ bIÞY c (10)

has rank � 2, and thus is planar, which means that
aX þ bY is planar. Second, assume that X and Y are pla-
nar and nY X

c ¼ dnXY
c for some scalar d (type 2 relation-

ship), then for any scalars a and b we can find a and

b such that d ¼ ab
ba. Working our way backwards, this

implies that

ðanX þ bnY ÞðaXc þ bY cÞ ¼ 0
which again means that aX þ bY is planar, concluding
that X and Y spans a linear subspace of planar
polygons. tu

The following corollaries follow immediately:

Corollary 1. If Xf and Yf are parallel planar polygons, then they
have a type 2 relationship, and hence span a linear subspace of
planar polygons.

Corollary 2. Suppose Xf and Yf span a linear subspace of planar
polygons, and let Pa;b be the plane that contains aXc

f þ bY c
f .

Then Xf and Yf have a type 2 relationship and are not parallel

iff nn :¼ nXf
�nYf

knXf
�nYf k

is the unique unit vector, up to sign, such

that nn 2 Pa;b for any a;b.

Using Lemma 1, it is easy to prove an analogous result
for PM’s:

Theorem 3. LetX and Y be two PM’s in R3 with common topol-
ogy. Then X and Y span a linear space of PM’s iff each non-
triangular face of X has a type 1 or type 2 relationship with
the corresponding face of Y .

Generating linear subspaces. We now turn to the task of
generating linear subspaces of PM’s. We say that a PM with
topology F and geometry Y generates a linear subspace V of
PM’s if Y 2 V and anyX 2 V is also a PMwith the topology
F . Given that V is generated by Y , Theorem 1 tells us that
for any f j 2 F , Xfj and Yf j must have a relationship of type

1 or type 2. Therefore, before we can generate a subspace
V from Y; we must specify the type of relationship tj that
each face f j should have, that is, complete a configuration C
for V . Then we may find, for each f j 2 F , all Xfj that are

related to Yfj by relationship type tj. As before, this is done

for each face separately. Specifically, we will construct the
matrix MC from Eq. (1) by first constructing matrices MCj ,
j ¼ 1; . . . ; NF , where Cj ¼ ðYf j ; f j; tjÞ are the configurations

for the subspaces Vj generated by single faces. For the sake
of brevity, hereinafter, Xj and Yj are used instead of Xf j

and Yfj :

We begin again with the affine relationship (type 1). This
means that Xc

fj
must be an affine transformation of Y c

fj
.

ThusXc
fj
must satisfy

Xc
j

�
Y c
j
þY c

j � I
� ¼ 0 (11)

) XjJððYjJÞþYjJ � IÞ ¼ 0; (12)

where Y þ
j is the pseudo-inverse of Yj, and J is the centering

matrix from (2). This equation can easily be transformed
into the form of (1). Indeed, if

Afj :¼ JððYjJÞþYjJ � IÞ;

then eq. (11) is equivalent to

ðAf j � IÞ vecðXjÞ ¼ 0; (13)

where � is the Kronecker product. PM’s related in this man-
ner were explored by Vaxman [25].

For the type 2 relationship, it is necessary to define an
additional unit vector nnj which will play the same role as in
Corollary 2. We will show in Theorem 4 that any choice of
nnj generates a maximal linear subspace. Based on the choice
of nnj, we consider two cases:
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1) nnj ¼ nYj . In this case, Xj and Yj must be parallel and
so

nYjX
c
j ¼ nXj

Xc
j ¼ 0:

2) nnj ? nYj . In this case, there exists a vector nXj
such

that nnj ¼ nXj
�nYj

knXj
�nYj k

. We can write Xc
j and Yfj

c in the

following basis:

Xc
j ¼ nnTj X

1
j þ ðnnj � nXj

ÞTX2
j (14)

Y c
j ¼ nnTj Y

1
j þ ðnnj � nYjÞTY 2

j ; (15)

where Xi
j,Y

i
j for i ¼ 1; 2 are row vectors which contain

the projections for each vertex on the appropriate vector.
Multiplying (14) by nYj and (15) by dnXj

we get

nYjX
c
j ¼ nYjðnnj � nXj

ÞTX2
j (16)

dnXj
Y c
j ¼ dnXj

ðnnj � nYjÞTY 2
j : (17)

The LHS of eqs. (16) and (17) are equal by the type 2 rela-
tionship, and hence so are the RHS. This implies that

X2
j ¼ dnXj

ðnnj � nYjÞT
nYjðnnj � nXj

ÞT Y 2
j ¼ d0Y 2

j

and substituting in (14) gives

Xc
j ¼ nnTj X

1
j þ d0ðnnj � nXj

ÞTY 2
j : (18)

We apply the cross product by nnj to both sides of the equa-
tion to get

nnj �Xc
j ¼ d0nnj � ðnnj � nXj

ÞY 2
j ¼ d00nT

Xj
Y 2
j :

Let B be a matrix whose columns span the null space of Y 2
j ,

i.e. Y 2
j B ¼ 0. We finally have that ðnnj �Xc

jÞB ¼ 0, which can

also be written in the form (1).
To better understand what this last space contains, we

look at eq. (18). We note that d0ðnnj � nXj
Þ can be replaced by

any vector nn?j perpendicular to nnj, and we can choose X1
j to

be equal to Y 1
j , so

Ŷj ¼ nnTj Y
1
j þ nn?j Y

2
j :

From this we see that the space contains all rotations of Yj

around nnj. It is easy to see that it also contains their scalings.
In addition, we observe that if Xj is contained in the space,

so is Xj þ nnTj X
1
j for any X1

j . Geometrically this means that

the vertices of Xj are free to move in the direction of nnj and
still remain in the space.

We now proceed to prove that each type of space gener-
ated for a face is maximal. Again we start with the simpler
case of planar polygons.

Theorem 4. Let C ¼ Y; F; tð Þ be a configuration for a single-face
mesh F ¼ ffg with geometry Y , and let V :¼ nullðMCÞ,
where MC is constructed as described above. Then V is a maxi-
mal linear subspace of planar polygons.

Proof. We will divide the proof into two parts, depending
on the type of relationship t encodes. First, assume that
V is the space of all affine transformations of Y . Let X be
a planar polygon such that X =2 V . Then X and Y must
have a relationship of type 2, that is, satisfy eq. (3). We
can assume w.l.o.g that nX and nY are not collinear. Oth-
erwise, we may simply rotate Y , as any rotation of it will
still be in V . Let R be a (unrelated) rotation matrix
around nY . Then RY 2 V and RY andX also have a type
2 relationship, namely

nY X
c ¼ d0nXRY

c: (19)

By subtracting eq. (3) from eq. (19) we get

nX dI � d0Rð ÞY c ¼ 0: (20)

Hence nX is orthogonal to the plane defined by dI�ð
d0RÞY c. This plane is exactly the same plane defined by
Y c
f , which means that nY is also orthogonal to dI�ð

d0RÞY c. This in turn implies that nX and nY are collinear,
which contradicts our previous assumption. Hence, V is
maximal.

The second part of the proof is further subdivided into
two cases. First, we consider the case where V is the space
of all polygons which are parallel to Y and define a planar
polygon X =2 V . X cannot be related to all polygons in V
by an affine transformation, so we assume w.l.o.g. that X
and Y have the relationship of type 2. In addition, sinceX
and Y are not parallel, nX and nY are not collinear. Then
by applying the same rotation strategy of Y used in the
proof for the affine case we infer that nX and nY are collin-
ear and reach contradiction again.

Finally, we consider the case where V is the space of
all polygons with type 2 relationship to Y . To define this
space we need to set the vector nnj in the plane of Y , which
we recall is shared among the planes of all polygons in
this space. Again, X has w.l.o.g. a relationship of type 2
to Y . X cannot contain nnj since it would mean that
X 2 V . Therefore, there is another vector nn0j that the

planes of X and Y share. Let Rnnj be a rotation matrix

around nnj. Then the plane of RnnjY does not contain nn0j,
but still has to have a type 2 relationship with X. Hence,
there is another vector nn00j that the planes of RnnjY and X

share. In a similar manner, we can find yet another poly-
gon whose plane shares a different vector nn000j with X.

These three vectors are not coplanar, yet each vertex ofX
is free to move in each of their directions and still remain
in the space. However, this way X can be made non-pla-
nar, contradicting our assumptions. Thus we conclude
that for any configuration, the space V is maximal. tu

In reality, to avoid having to specify an explicit normal
for each face having a relationship of type 2, we used three
cases when specifying relationships types for faces. The first
case, which we call the affine case, is simply when all faces
have type 1 relationship. In the second case, nj is set to be
equal to nYf j

, for every j. Thus, the subspace generated in

this case is that of all polygons which are parallel to the gen-
erating polygons, hence, the parallel case. In the third case,
the vertical case, for all faces, nj ¼ z� nYf j

. The justification
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for this is the fact that many meshes, especially architectural
meshes, have a prominent up direction.

Theorem 4 tells us that by using this construction to gen-
erate a space of PM’s, every face potentially generates a
maximal space. However, the linear subspaces of the whole
PM may not be always maximal. This can happen when
two neighboring faces generate spaces which do not
”match”, causing the two shared vertices to be overly
restricted. For example, the red cube in Fig. 3 was deformed
in the parallel subspace. In this space, each face can only be
stretched in the obvious directions, which is a subset of the
affine transformations of the face. Thus, the parallel sub-
space in that case is not maximal, since it is contained in the
affine subspace. Note that by removing a single face from
the cube, the linear subspaces become different. These situa-
tions are easily detectable, and the face can be reassigned.

It is now easy to show that there is a piecewise linear
path between any two PM’s in the manifold: using the affine
space generated by the two meshes, they can be projected to
the same plane, where they share the parallel space. This
construction however is not very useful as it does not pro-
vide any insight into the manifold itself. Nevertheless, it
forms a loose ”lower bound”.

In our examples, the relationship types per face were
color coded by blue, red and green for the affine, parallel
and vertical cases, respectively. When more than a single
relationship type is used to generate the subspace, it is
referred to as a mixed space.

Degrees of freedom. The number of degrees of freedom
(NDOF) of a linear subspace of PM’s is exactly the dimen-
sion of the nullspace B. We can estimate the NDOF in some
specific cases, such as when the space is not mixed. The
NDOF is then exactly the co-rank ofMC. However, this value
depends too much on the current embedding of the PM and
does not give any insight into the relation to its topology.
We instead provide a lower bound on the NDOF for a given
PM, which can be inferred from the topology alone.

Denote by Nv, Nb, Ne, Nf , Nc the number of vertices,
boundary vertices, edges, faces and corners (i.e. face-vertex
pairs) of the PM, respectively. The number of variables (the
mesh vertex geometry) is always 3Nv. In the affine case, the
number of equations is 3Nc, but each face is determined by

just three vertices. Hence a lower bound on the NDOF is
3ðNv þ 3Nf �NcÞ. Similarly, in the parallel case the lower
bound is 3Nv �Nc þNf , and in the vertical case it is
3Nv � 2ðNc � 2NfÞ.

We can use the generalized Euler formula, Nv �Ne þ
Nf � b ¼ 2g, where b is the number of boundaries, and g is
the genus of the mesh, and the fact that Nc ¼ 2Ne �Nb to
obtain

Nc ¼ 2ðNv � 2gþNf � bÞ �Nb:

Plugging this into the formulas for the NDOF yields an
expression that does not depend on Nc and Ne. For (semi-)
regular graphs, Nf can also be expressed using Nv and Nb

and vice-versa, which may give more intuitive results.
Additionally, we define the number of free vertices (NFV) as
the NDOF divided by 3. The NFV roughly gives the num-
ber of vertices that can be fixed independently. We list the
minimal NVF for quad and hex meshes for both cases in
Table 1.

The table shows that the minimal NFV for quad meshes
in the affine and parallel cases is determined by the size of
the boundary. See Appendix 1 for further details. In fact,
our experiments show that, apart from very symmetric
cases like spheres or tori, the minimal NFV for the affine
case is the true NFV, up to a global transformation. This
means that there is very little that can be done with closed
quad meshes in the affine case. The situation is even worse
for hex meshes: unless the mesh is just a strip of hexagons,
the minimal NFV will be negative. In fact, we prove in
Appendix 2 that the actual NFV is 3 for
any 3-regular mesh without a boundary. A
trick that can be used to increase the NFV
is to apply a half-edge subdivision to the
hex mesh (see inset). Technically, the new
mesh will not be a hex mesh, but it might
retain the ”look” of the original hex mesh,
and the minimal NFV will be much higher.
As for the parallel case, it is easy to show
that for closed 3-regular PM’s, the NFV is
exactlyNf .

3 EXPLORING LINEAR SUBSPACES

Overview. Once all faces of the mesh have relationship types
assigned to them and the matrix MC is computed, we can
begin the exploration of nullðMCÞ. While we can do this by
simply computing an orthogonal basis for nullðMCÞ, it may
not be very useful: this basis will contain random PM’s.
Instead, we discuss ways to create more meaningful shapes,
which are targeted toward different levels of editing.

TABLE 1
Minimal Number of Free Vertices (NFV) in Different Subspaces

Quad mesh Hex mesh

Affine Nb
2 þ bþ 2g �Nv

2 þ 3
4Nb þ 3

2 bþ 3g

Parallel Nb
2 þ bþ 2g Nv

6 þ 5Nb
12 þ 5b

6 þ 5g
3

Vertical � Nv
3 þ 2Nb

3 þ 4b
3 þ 8g=3

Fig. 3. Hexahedron in different subspaces generated by the (gray) cube
on the top left. They are the closest ones in their subspaces to the (gray)
non-PM on the top right, subject to the hard constraint imposed by the
yellow vertex.
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Eigenshapes. Yang et al. [27] proposed to explore the man-
ifold of PM’s not by explicitly setting positional constraints,
but by traversing the neighborhood of the PM. This is done
by choosing a few directions (two or three for easy naviga-
tion) on the osculate which match the manifold the best.
Using linear subspaces, we do not have to worry about
going far away from the manifold, which allows us to be
more adventurous with the exploration. We propose using
the PM’s ”harmonics” as a basis for exploration. More pre-
cisely, we use the eigenvectors of the Laplacian L of the gen-
erating mesh Y , constrained to the linear space, which we
call eigenshapes. These are defined by the constrained Ray-
leigh quotient:

max
X

XTLX

XTX
s:t: MCX ¼ 0: (21)

The solution to this problem is found in [9] as the eigen-
vectors of PLP where

P ¼ I �MT
C
�
MCMT

C
��1

MC:

See implementation details in Section 4 on how to compute
the eigenshapes efficiently. To effectively visualize the
eigenshapes and to explore them efficiently, we suggest the
following idea: add the eigenshapes to the source PM and
apply a ”band-pass-filter” to it. By sliding the filter we can
quickly see how eigenshapes of different frequencies affect
the PM (Fig. 10)

Sparse shapes. Habbecke and Kobelt [10] discussed edit-
ing of constrained meshes, where their goal was to be able
to reposition a vertex while making as little as possible
change to the rest of the mesh and satisfy the constraints.
This addresses the well-known problem of editing with
constraints, where making a change in one portion of a
mesh damages the work that was already done elsewhere
in the mesh. Their approach is based on linearizing the
constraints and finding sparse solutions to the linearized
system. The same strategy can be used to deform PM’s
and in fact, one of the constraints treated in [27] is the pla-
narity of faces. In terms of basic shapes, in order to be
able to move just a small set of vertices, a shape where
most of the vertices lie on the origin is needed. These
sparse shapes are just sparse vectors in nullðMCÞ. To find
sparse solutions, Habbecke and Kobelt employ the
Orthogonal Matching Pursuit (OMP) algorithm [22], and
the same can be done to find sparse shapes.

For many subspaces, the only sparse shapes that can be
found are not sparse at all. For example, the affine space for
quad meshes contains truly sparse shapes only for very
symmetric cases (Fig. 4). In these cases approximate sparse
shapes—shapes that are not in the linear subspace but close
to it—can be found instead. For comparison, the accurate
sparse shape in the middle of Fig. 5 has jjMCXjj � 10�12,

and the approximate sparse shape has jjMCXjj � 10�4. The
original PM was produced by planarizing a deformed torus,
which had jjMCXjj � 0:1.

Fundamental shapes. While a sparse shape changes only a
small number of vertices, it can still be non-local, moving
vertices on opposite sides of the PM. In many cases a shape
with more locality is required; one that perhaps moves all

vertices, but to a lesser extent ([11]). To elaborate, suppose a
vertex vi has been selected. We may then define the funda-
mental shape associated with vi as the solution to the opti-
mization problem

min
X

jjX � dijj2 þ �jjLXjj2

s:t: MCX ¼ 0;
(22)

where di is a vector whose only non-zero elements are the
ones corresponding to vi and LX is a regularization term.
Of course, both the distance function and the regularization
terms can be replaced by other similar functions.

Handle-based deformation. PM’s can be deformed directly,
and the handle-based approach is probably the most natural
metaphor to use (excluding, perhaps, the recent curve-
based approach [29]). This was studied in detail in [25] and
[17] for the case of PM’s in the affine case only, where an
As-Rigid/Similar-As-Possible (ARAP/ASAP) deformation
was computed within the resulting subspace. The well-
known solution to the ARAP/ASAP deformation problem
uses an alternating local/global scheme [14], [21]. The only
difference when applying this to PM’s is that the constraints
defining the linear subspace must be satisfied when solving
the global steps. In Fig. 7 we used the same method as in
[25] to deform in an ASAP way a half sphere hex mesh
in the non-mixed spaces. The boundary was kept fixed
and one vertex on the top was moved slightly higher.
The affine subspace allows only global transformations and
the parallel subspace produced self-intersections almost
immediately. The vertical subspace produced pleasing, non-
trivial results.

Dual exploration. Every polyhedron admits a family of
dual polyhedra, most notably the polar dual [19], having
the property that the vector to each of the dual vertices is
normal to the corresponding primal face. Usually polar
duals are associated only with star-shaped polyhedrons,
since otherwise the polar dual may self-intersect. Here we
ignore this and associate polar duals with general, non-con-
vex PM’s. Obviously the polar dual associated with a PM is
itself a PM, so the ideas presented in this paper apply also
to the space of polar duals of a given PM. This essentially
means that we can explore the subspace of the PM based on
its face normals instead of the vertex positions. Although the

Fig. 4. Adding eigenshapes of different subspaces to a simple spherical
quad PM. See also accompanying video.
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subspaces defined using the face normals are linear, since
they are the same as the linear spaces of polar duals, they
are not linear with respect to the vertices of the primal
mesh. The reason is that the duality transformation is not
linear. Still, it involves only solving a sparse linear system
and can be done in real time.

The benefit of dual exploration of PM subspaces is that
this gives a completely different number of DOFs compared
to the primal space, based on the normal of the faces instead
of the vertices. As an extreme example, the duals of any
3-regular meshes are triangle meshes, which trivially pre-
serve planarity. Hence, editing a 3-regular mesh in the nor-
mal domain is also trivial: any choice of normal will result
in a valid PM. Fig. 8 shows the dual deformation of two
PM’s. The results there could not have been achieved using
only one primal linear space.

4 DISCUSSION AND FUTURE WORK

Implementation details. Most of the software implementation
was done in MATLAB, and was wrapped as a plugin for
Autodesk Maya, for its user interface. The matrix MC was
built by constructing MCj face-by-face. MCj as defined here

is already not full rank, so we reduced the number of equa-
tions per-face using SVD. The construction takes less than a
second for meshes with approximately a thousand faces.

To compute the eigenshapes, a sparse QR decomposition
was used to generate an orthonormal basis N of nullðMCÞ,

then anyX in nullðMCÞ can be written asNw for some w, and

max
X2nullðMCÞ

XTLX

XTX
¼ max

w

wTNTLNw

wTNTNw

¼ max
w

wTNTLNw

wTw
;

(23)

which is solved using the eigendecomposition of NTLN .
This approach gives much better precision and performance
than the formula in [9], since pseudoinverse computation is
avoided and full size singular value decomposition is
replaced with a much smaller eigenvalue decomposition.
For the handle-based deformation, the relevant matrices
were decomposed in a preprocessing step. We did not
invest much effort to use the best possible decomposition
and carefully tune the parameters. Specifically, we used
LDL decomposition for the initial mesh approximation step,
but a sparse QR decomposition for the global steps in the
ARAP/ASAP deformation, due to numerical instabilities
caused by LDL there.

Limitations. Our assumption is that the initial PM has pla-
nar faces. Otherwise, many of the calculations made are not
well-defined. Of course, the planarity of faces can only be
up to some numerical precision. We have found that the
affine case is less sensitive to non-planar faces than the other
cases. The mesh in Fig. 10 does not have planar faces, yet the
eigenshapes computed for it in the affine space do not cause
them to be ”less” planar. On the other hand, the eigen-
shapes of the parallel case (not shown) quickly deteriorate
the quality of the mesh.

Fig. 5. Sparse shapes. (Left) Part of a symmetric torus quad PM, having
an accurate sparse shape. (Middle) Deformed torus. Its accurate sparse
shape is not sparse at all, but it has an inaccurate sparse shape. (Right)
Sparse shape of a flat PM.

Fig. 7. ASAP deformation of a hexagonal half sphere. Note that in the
(blue) affine subspace, only global transformations are possible.

Fig. 6. Fundamental shapes of the deformed torus.

Fig. 8. Deformation of a (left) sphere and a torus using the (middle) polar
dual. In both cases an eigenshape of low frequency was added to the
dual mesh, and a new (right) primal mesh results.
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Creating an initial PM. The linear subspaces described
here need an initial PM realizing the given topology. The
simplest way to generate such a PM is to take a non-polyhe-
dral mesh with the given topology and project it to a plane.
The original mesh can then be projected into a linear space
generated from the flat mesh. The result of this, however, is
usually unsatisfactory and we did not use it. Most of the
PM’s in this paper were created by experimenting with the
TopMod 3.0 software [1], where we used the variety of sub-
division schemes implemented there to create elaborate
meshes from simple solids. If only the mesh topology is
given, then a simple ”spring-based” planar embedding,
such as Tutte’s [23], should suffice. Figs. 1, 9 and 11 show
PM’s with initial PM’s being planar embeddings.

Selecting the right space. There are, literally, infinite num-
ber of linear subspaces available for a single PM. Even if we
limit ourselves to the three cases mentioned above, the
number of possibilities to assign them to faces is exponential
and manually assigning them is tedious. We did not investi-
gate methods to find the optimal linear subspace to work
with, or even attempt to define what exactly optimal means.
A simple definition could be: the subspace with the highest
dimension. Experimentally we observed that in many cases
the parallel space had the largest dimension. However, this
subspace does not generate much visual variation in the
overall look of the PM, compared to the other spaces. This
problem remains open for now, and we reserve it for future
work. In practice, switching between the non-mixed cases
provided sufficient variation.

Currently we use a number of heuristics while experi-
menting with our system. The affine space is easier to work
with when there are many DOFs, as is the case for quad
mesheswith boundaries. Figs. 1, 2 and 6 show results of such
quad meshes. In situations where the number of DOFs is too
small, this is usually caused by faces with more than four
edges or vertices of degree three. These can be automatically
reassigned to the other two cases to achieve more freedom.
Fig. 12 shows some deformation results with hexagonal
mesh, for which the affine space has only 12 DOF, while the
other two cases have several hundreds DOF. On the other
hand, when using the parallel or the third case, some faces
may enjoy too much freedom and misbehave while deform-
ing. These can be reassigned to the parallel case, since it bet-
ter preserves the shape of a polygon.

A related problem is how to interpolate PM’s that are not
related by a single linear space. We have shown that any
two can be connected by a succession of three linear spaces,
which is not very useful for interpolation. An interesting
direction to explore is to approximate paths in the manifold
of PM’s by linear segments using the linear subspaces.

Design pipeline. Our experiments led us to the following
pipeline for designing a PM. For flat meshes, the first step is
to afford them some height. This is done by regular defor-
mation followed by a planarization step, or by using the
affine linear subspace and applying the handle-based defor-
mation or using the eigenshape band-pass-filter technique.
The reason for not using the parallel or vertical subspaces
is that they cannot ”unflatten” the PM. However, mixed
spaces can also be used. Once we have a PM with some
volume, the rest depends on the effect we aim to achieve.
For large deformations we use the affine subspace when
working on quad meshes with boundaries, and the other
subspaces otherwise. To add variation or waviness to the
PM, we use the eigenshapes. The affine eigenshapes are use-
ful when the overall look of the PM needs to be maintained
but the shapes of individual faces need to be changed.
Using the parallel eigenshapes is an efficient way of adding
variation to meshes having uniformly-sized faces. We show
a variety of results in Figs. 8, 9, and 10 (see also the accom-
panying video).

Fig. 9. Designing a PM from a planar graph. The graph was created by
projecting a non-PM to the plane. It was then given height using the
affine subspace, and then deformed using eigenshapes in the parallel
and vertical spaces.

Fig. 10. The Yas model deformed using eigenshapes of different fre-
quency in the affine subspace.

Fig. 11. Another example of designing a PM from a planar graph. The
graph was created by subdividing a pentagon using several schemes
until the desired result was achieved. It was given height in the affine
subspace and then deformed in a mixed subspace.
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The sparse and fundamental shapes, while helping to
visualize the limitations of various subspaces, have not
proven to be very useful for the design process. The reason
is, by definition, they can only make the PM less smooth,
which usually means less visually pleasing. However, we
believe they are valuable as a theoretical tool for studying
PM’s. One future research direction could be to use them to
decide where to make small adjustments to the topology of
the mesh in order to add more freedom to specific places.
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