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Abstract

We consider the problem of shape deformation in two dimensions,
using point handles. The challenge these types of deformation al-
gorithms face is, given the user handles’ positions, to quickly infer
the deformation of the rest of the shape. Current algorithms can
be split into two groups: variational algorithms that minimize or
approximate the minimizer of some energy every time new handles’
positions are provided (e.g.As-Rigid-As-Possible), and closed-form
expressions that relate the handles’ positions and the deformation
using known weights or formulas (e.g. Linear Blend Skinning or
Generalized Barycentric Coordinates). Variational algorithms are
time consuming, but usually produce high quality deformations
while closed-form expressions are very fast to evaluate, but some-
times fail to produce satisfying deformations.

In this paper we bridge this gap for planar deformations by designing
closed-form expressions that well approximate the deformations
computed by variational algorithms and consequently achieves both
real-time performance and high-quality deformations.

1 Introduction

Deformations are central in computer graphics and image process-
ing. Their applications are wide-ranging, including image warping,
registration and character animation.

Our main focus in this paper are deformations controlled by point
handles. In this case, the user drives the deformation of a planar
shape Ω ⊂ R2 by displacing a set of points located on the shape
P = (p1, . . . ,pn) ⊂ Ωn to new positions Q = (q1, . . . ,qn) ∈
R2×n and the algorithm computes a map deforming the rest of the
shape f(x) : Ω→ R2.

State-of-the-art deformations are usually achieved using a varia-
tional deformation framework. In this framework, the deforma-
tion f is computed via a minimization of an energy functional.
This is done by first specifying a set of spatial basis functions
Φ =

{
ϕ1(x), . . . ϕ|Φ|(x)

}
(e.g., piecewise-linear basis functions

over a triangulation of Ω or some reduced basis), and expressing the
family of candidate deformations in this basis,

fΦ(x) :=

|Φ|∑
i=1

Ciϕi(x), (1)

where Ci = [Cxi , C
y
i ]T ∈ R2×1. Then, the unknowns Ci are found

by minimizing a deformation energy. This usually leads to a non-
linear optimization problem that is computationally demanding, and
special efforts were dedicated in the past to design efficient solvers
and acceleration techniques [Sheffer and Kraevoy 2004; Botsch et al.
2006; McAdams et al. 2011; Hildebrandt et al. 2011; Manson and
Schaefer 2011].

Conceptually, the deformations resulting from the variational frame-
work can be described for all possible handle positions a-priori. This
can be done by regarding the vector coefficients Ci as functions of
the handles’ positions, namely Ci(Q). In this sense, the handles’
positions Q can be regarded as part of the deformation problem and
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Figure 1: Deformation of the Octo model, using an approximate de-
formation operator. Once the approximate DefOp has been trained,
it can be evaluated in a fraction of the time it takes to compute the
variational DefOp. In this example, we used 1000 samples and
RBFs. The sample were taken with equal probability from discs
around the samples (shown in orange), and the samples’ voronoi
cells.

it becomes useful to encode the relations between handles’ positions
Q and deformation of points x ∈ Ω in a functional form. This leads
to the deformation operator, or DefOp for short, denoted by

D(x,Q) : R2 × R2×n → R2. (2)

Analogously to the treatment of spatial dimensions in vari-
ational deformations, we can choose a handle basis Ψ ={
ψ1(Q), . . . , ψ|Ψ|(Q)

}
for the handles space R2×n and approx-

imate any DefOp with the finite dimensional, (Φ,Ψ)-DefOp:

DΦ,Ψ(x,Q) :=

|Φ|∑
i=1

|Ψ|∑
j=1

Cijϕi(x)ψj(Q), (3)

where Cij =
[
Cxij , C

y
ij

]T ∈ R2×1 are the unknown variables of the
approximation. The main advantage of this description is that once
the coefficients Cij are fixed, computing the deformation for any
x ∈ Ω and every Q amounts to the simple closed-form expression
in Eq. (3), where no optimization is required.

Somewhat surprisingly, formula (3) can be used to approximate
variational deformation models such as as-rigid-as-possible (ARAP)
[Sorkine and Alexa 2007; Chao et al. 2010]. Constructing such
an approximation DΦ,Ψ is rather simple and follows the following
steps: First, choose any spatial basis Φ, and let handle basis Ψ to
be a generic approximation function bases (e.g., polynomials and
radial-basis functions). Second, sample the desired deformation
operator at a set of sample handle points {Qk}. Lastly, fit the model
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Figure 2: Approximate ARAP deformations of the Crab model, using linear, quadratic and TPS basis functions, compared to the ground truth
(bottom). This model has 11 handles, and was trained using 500 samples. We picked several handle positions at random. Note how generally
the approximation improves when the handle basis becomes richer.

(3) using a least-squares error functional to the DefOp at the sample
points.

The sampling of the DefOp at the handle points Qk, that is, comput-
ing the deformations for a set of handle positions Qk, is the most
computationally demanding part of our algorithm. Nevertheless, it
can be done efficiently in our case using the following bootstrapping
procedure: We first use a linear basis Ψ on a small sampling, to train
a simple DefOp, providing a rough approximation to the variational
one. Next, we use this approximation to initialize the optimization
for a desired number of sample points. Finally. we use the new
sample points to train the final approximation DΦ,Ψ.

We demonstrate that DefOp approximations of ARAP can provide
comparable deformations using a simple closed-form expression (3)
at reasonable preprocessing times. For example, Figure 1 shows
an octopus model with 9 handle points. The deformation operator
in this case was trained on 1000 samples in 20 minutes. We used
at most 1019 handle basis functions, and achieved deformations
computable at rate of more than 1,800 fps.

2 Background and previous work

Linear handle basis. Possibly the simplest example of a (Φ,Ψ)-
DefOp used in practice is,

Dw(x,Q) =
∑
i

wi(x)qi, (4)

where wi(x) are scalar weight functions defined over the shape Ω.
Previous methods that used this model differ mostly in how the
weight functions are defined. One early case is [Sederberg and Parry
1986] which uses tensor product B-splines. Currently, this model is
perhaps most associated with Generalized Barycentric Coordinates
(GBC) [Floater 2003; Ju et al. 2005; Hormann and Floater 2006;
Joshi et al. 2007] where qi are vertices of an enclosing polygon
(“cage”) used to control the deformation. It is important to note
again that the weight functions in (4) are predefined and that the
dependence of Dw in qi is linear. This is in contrast to methods that
use basis functions to interpolate the handles’ positions by solving a
linear system, such as [Bookstein 1989; Botsch and Kobbelt 2005].

Eq. (4) can be seen as a (Φ,Ψ)-DefOp by considering ϕi(x) =
wi(x), and ψj(Q) to consist of the linear coordinate functions qxj ,
qyj . This specific model is quite limited, since the different coordi-
nate functions do not blend (i.e., x coordinate of qi only affects the
x coordinate of the map) and each qi only multiplies a single match-
ing wi. While the weight functions have been improved in terms of,
e.g., smoothness [Joshi et al. 2007] and locality [Zhang et al. 2014],

the above limitation hinders GBC from handling rotations well in
deformations, and GBC has been noted in the past to cause excessive
shearing. A partial remedy was suggested in [Weber et al. 2011]
where the coordinate functions of qi do blend in a certain way due
to the representation of qi as complex numbers, and wi as complex
valued functions. This model can be formulated using matrix-valued
functions as follows,

DW (x,Q) =
∑

Wi(x)qi, (5)

where Wi(x) are 2 × 2 similarity matrices. These matrix weights
can generally handle rotations better, and in 2D can even generate
conformal maps [Lipman et al. 2008; Weber et al. 2009], though
interpolation capabilities are then lost. Nevertheless, this model is
still not the most general linear model since the matrices Wi(x) can
be taken to include non-similarities, and coupling of different qi can
be introduced.

This hints that there is something to be gained by extending the
handle basis to the full linear basis in the handle space R2×n, and
probably even beyond linear. This is exactly what we pursue in this
paper.

Variational deformation. Currently, variational deformation tech-
niques produce the highest quality deformations with the drawback
of being computationally intensive. In variational techniques, an
optimization problem is solved repeatedly during user interaction,
for every set of new handle positions Q specified by the user. The
fundamental model for these problems is,

min
{Ci}

E(fΦ)

s.t. fΦ(p`) = q`, ` = 1, .., n

fΦ(·) =
∑

Ciϕi(·),

(6)

where fΦ is a representation of a map in some spatial basis Φ. Each
such problem defines a variational DefOp DE

Φ , which, given Q, can
be solved to obtain DE

Φ(x,Q) as a function of x. Different methods
vary mostly in terms of the deformation energy E they use, the
minimization algorithm used to solve (6), and the discretization of
the problem, namely the choice of the basis Φ.

The vast majority of variational methods use linear finite elements
as the basis for the optimization. Early methods minimized some
form of quadratic smoothness energy, e.g., Dirichlet, Poisson or bi-
harmonic energy [Botsch and Kobbelt 2004; Yu et al. 2004; Sorkine
et al. 2004], or conformal energy [Lévy et al. 2002; Liu et al. 2008;
Igarashi et al. 2005], by solving a linear system. These methods
perform well for small rotations, but suffer from lack of rotation



invariance and are sub-optimal in handling larger rotations. Linear
rotation-invariant methods do not tackle the point handle case [Lip-
man et al. 2005; Kircher and Garland 2008]. Non-linear variational
methods have formulated rotational invariant energies [Sheffer and
Kraevoy 2004] but the focus then moved to designing an efficient
optimization which turned out to be a challenge [Botsch et al. 2006;
Huang et al. 2006; Sorkine and Alexa 2007; Chao et al. 2010].

Skeletal Deformation. A different deformation technique other
than the handle-based model is based on skeletons. While we do
not treat this kind of deformation in this paper, some of the previous
work is still relevant. We give a brief review here, and refer the reader
to [Jacobson et al. 2014] for a more comprehensive introduction.

Skeletal deformation is usually associated with Linear Blend Skin-
ning, which has the following form

DLBS(x) =
∑

wi(x)(Tix + qi), (7)

where each Ti is a transformation corresponding to a certain bone in
the skeleton. [Jacobson et al. 2014] noted that Eq. (7), similarly to
(4), is not the most general linear model. [Wang and Phillips 2002;
Merry et al. 2006] have noted this as well, and have suggested more
general models, but still not the most general model possible. Sev-
eral authors have suggested different extensions to the linear basis
[Jacobson and Sorkine 2011; Kavan and Sorkine 2012]. Example-
based skinning assumes that several examples of deformed poses are
given and solves an interpolation problem [Sloan et al. 2001; Mohr
and Gleicher 2003; Lewis et al. 2000; Weber et al. 2007].

Our approach is related, however differ in two key aspects: First, our
deformation operators model the relation between position and han-
dles in the arguably most general way allowing non-linear relations
approximated with polynomials and radial-basis functions. Second,
we approximate the deformation operator for point-based deforma-
tions where no input rotations are provided. This is in contrast
to skinning where transformations of bones are known (i.e., Ti in
Eq. (7)). We show that even in this more challenging settings, simple
closed-form formula such as (3) can handle rotations gracefully.

3 Method

In this section we present our approach for computing a finite dimen-
sional (Φ,Ψ)-DefOp DΦ,Ψ, which approximates a given variational
DefOp, DE

Φ .

First, we discuss the choice of approximation bases Φ,Ψ and prove
an interpolation result for DefOps. Second, we describe the least-
squares optimization to calculate the (Φ,Ψ)-DefOp approximation
by fitting at a set of handle point samples {Qk}. Lastly, we discuss
how to calculate the deformations at the samples Qk efficiently with
a bootstrapping procedure taking advantage of lower degree DefOp
approximation.

3.1 Choice of bases Φ,Ψ

In general, our method can work with any choice of the spatial
basis Φ and the handle basis Ψ. However, in order to produce
useful approximations to DefOps, the bases should possess some
approximation power. Therefore, we first require Φ and Ψ to contain
the linear functions: for Φ, it means just the constant function
together with the x and y coordinate functions in R2, and for Ψ, the
constant functions and all the coordinate functions in R2×n, in total
2n+ 1 functions.

To understand how to extend Φ,Ψ over the linear bases, we look
again at Eq. (3). Fixing Q and observing DΦ,Ψ(x,Q) as a function
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Figure 3: An example showing trajectories and their approxima-
tions. The trajectory of a point is its displacement as a function of
the displacement of the handles. In this example, only one handle
moves, which makes it possible to visualize trajectories. We show
the trajectory of the starred point (second row, left). The trajectory
is visualized by the x- and y- components of the displacement of the
point. In the top row, we show several variational deformations of
the bar, with their TPS approximations (see Fig. 7 for more details
on this example). The two bottom rows show the trajectories of the
true variational DefOp and the approximation. The colored dots
correspond to the deformations from the top row (their positions
are approximate) . Note how the discontinuity in the ground truth
trajectory is smoothed out by the approximation, but the overall
structure is captured in the approximation.

of x, we see that Φ should be rich enough to approximate the de-
formation fΦ as produced by the variational approach (6). For this
reason, we select to include in Φ some of known bases from vari-
ational deformation literature: The standard linear finite-elements
(FEM) hat functions defined over a mesh triangulating the domain
Ω, or, a reduced basis defined over it, e.g. the eigenfunctions of the
Laplacian define over the mesh. For the latter we use the linearly
precise Laplacian presented in [Wang et al. 2015] that better handles
areas near boundaries.

To understand how to set Ψ, we fix a particular point x and observe
how it moves, that is, we look atDΦ,Ψ(x,Q), as a function of Q. We
call this function of the positions as a function of Q the trajectory of
x. Examining these functions for the ARAP energy for a bar shows
that they are mostly very smooth. In fact, they are dominated by
a linear component, except in area where the deformation is not
stable, as can be seen in the left column of Figure 3. This motivates
picking generic approximation bases, such as the thin-plate splines
(TPS) [Bookstein 1989], a type of Radial Basis Function (RBF), for
approximating the trajectories, namely for choosing the handle basis



Ψ. In our approach, we put one RBF centered at each sample Qk,
k = 1, ..,m. The right column in Figure 3 shows the trajectories
of a (Φ,Ψ)-DefOp DΦ,Ψ with TPS basis for Ψ as computed using
the algorithm presented below. Note that the trajectories are overall
well approximated.

Aside from TPS, we also test polynomials of degree up to 3 for Ψ.
It is important to note that the number of functions in the Ψ basis
rises quickly, due to the high dimension of the handle space (2n):
there are 1 + 3n+ 2n2 basis functions in the quadratic polynomials,
1 + 11

3
n + 4n2 + 4

3
n3 in cubic polynomials, and 1 + 2n + m

in the TPS basis. As we show below, the TPS basis provides the
best tradeoff of approximation quality and compactness of the basis.
An interesting point is that choosing the TPS basis for Ψ allows
interpolating arbitrary deformations fΦ at each and every handle
position Qk, as the following proposition implies,

Proposition 1. Let Ψ be the TPS handle basis, and let an arbitrary
spatial deformation

fkΦ(x) =
∑
i

Ck
i ϕi(x)

be prescribed for every handle sample Qk, k = 1, ..,m. Then, there
exists an interpolatory (Φ,Ψ)-DefOp, that is

DΦ,Ψ(·,Qk) ≡ fkΦ(·), ∀k = 1, ..,m

Proof. Using the definition of DΦ,Ψ, the proposition holds if the
following equality holds for all x, and k = 1, ..,m,

∑
i

(∑
j

Cijψj(Qk)

)
ϕi(x) =

∑
i

Ck
i ϕi(x).

Since Φ is a basis this will be true iff∑
j

Cijψj(Qk) = Ck
i ,

for all x, i = 1, .., n, k = 1, ..m. And these equalities for each fixed
i can be seen as interpolation problem in the TPS basis Ψ.

We show examples comparing these bases in approximating a vari-
ational deformation operator (denoted as ”ground truth”) in Fig. 4,
and Fig. 7. We note that, as the basis becomes richer with basis func-
tions, the deformation becomes more similar to the ground truth. We
investigate the effect of the choice of basis and number of samples
on the deformation operator DΦ,Ψ in Section 4.

3.2 Least-squares approximation

In this section we present a least-squares approximation of a given
ground truth deformation operator DE

Φ with a (Φ,Ψ)-DefOp DΦ,Ψ.
The idea is to define DΦ,Ψ as best L2 approximation to the ground-
truth deformation operatorDE

Φ . Specifically, we consider the (Φ,Ψ)-
DefOp that solves the linearly constrained least-squares problem,

min
{Cij}

m∑
k=1

∥∥∥DE
Φ(·,Qk)−DΦ,Ψ(·,Qk)

∥∥∥2

(8a)

s.t. DΦ,Ψ (x,P) = x, ∀x ∈ Ω (8b)
DΦ,Ψ (p`,Qk) = qk,`, ∀`, k (8c)

The energy (8a) simply strives to fit the (Φ,Ψ)-DefOp to the ground
truth at a set of sample handle points Qk = (qk,1, . . . ,qk,n) ∈
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Figure 4: Deformation of a U shape, with different handle bases.
The orange region was sampled uniformly with 50 points for the two
red handles, while the blue handles remained fixed. Note that in
this case, the linear basis already produces a result very similar to
the ground truth, while the cubic and TPS bases improve upon that
result.

R2×n, k = 1, ..,m. The constraint (8b) requires that the rest-pose
is recovered if the handles are placed in their original positions, i.e.,
Q = P. The requirement that (8b) holds for all x ∈ Ω can be
enforced by writing the functions x = [x, y]t in the basis Φ and
equating coefficients on both sides, which leads to a set of linear
equations.

The constraint (8c) asks that the handle position are interpolated at
the sample handle points. This raises the question, whether interpola-
tion happens at other, arbitrary handle positions Q = (q1, . . . ,qn).
Namely, is it true that DΦ,Ψ(q`,Q) = q`? Indeed, interpolation
is guaranteed at all handle positions, as shown in the proposition
below.

Proposition 2. If Ψ contains the linear functions and Φ can in-
terpolate arbitrary values at P, then (8c) is feasible and implies
interpolation at all handle positions Q ∈ R2×n.

Proof. Plugging the definition of DΦ,Ψ into (8c) leads to

∑
j

(∑
i

Cijϕi(p`)

)
ψj(Qk) = qk,`, (9)

for all ` = 1, .., n, k = 1, ..,m. Since Ψ contains the linear func-
tions in R2×n we can choose C`

j ∈ R2×1 so that∑
j

C`
jψj(Q) = q`, ∀Q ∈ R2×n, ` = 1, .., n.

Plugging this with Q = Qk into (9) we get

∑
j

(∑
i

Cijϕi(p`)

)
ψj(Qk) =

∑
j

C`
jψj(Qk),

for all ` = 1, .., n, k = 1, ..,m. For every fixed `, since Ψ provides
a unique interpolation on a set of m generic points Qk (or less
than m, e.g., for polynomial bases), we have equality in the above
equation for all Q ∈ R2×n. To show feasibility, we note that for
every fixed j, the following interpolation problem is solvable using
the interpolation property of Φ,∑

i

Cijϕi(p`) = C`
j , ∀` = 1, .., n.
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Figure 5: Approximation of deformation trajectories: (Left) We show a collection of deformations obtained by positioning the red handle
and solving a S-ARAP deformation problem. (Middle) We observe that trajectories of points, i.e.their displacement as a function of the
displacement of the handle, are generally smooth and slowly varying. (Right) Therefore, this dependence can be well-approximated using
classical approximation bases, such as polynomials or thin plate splines, resulting in closed-form expressions for computing deformations
comparable to the ground truth.

Expressing (8) directly in terms of the unknowns of the model Cij =
[Cxij , C

y
ij ]
T , where we denote the matrices Cν = (Cνij), ν ∈ {x, y}

gives the a linearly constrained least-squares problem solved using
Lagrange multipliers (derivation is provided in Appendix A).

3.3 Bootstrapping deformation sampling

In order to solve (8), one needs to supply a set of deformations
DE

Φ(·,Qk) at a set of samples points {Qk}mk=1 ⊂ R2×m. Given a
set of samples one could optimize (6) for every sample Qk indepen-
dently. However, the process may enjoy a considerable speedup by
using an early DefOp approximation for bootstrapping, as follows.
We choose Ψ to contain only the constant and linear functions and
sample 2n+ 1 deformations. Then, we fit a linear deformation op-
erator (linear here refers to the Ψ basis) by solving (8). This already
provides a plausible approximation to the ground truth deformation
operator. Second, we use this rough DefOp to initialize the opti-
mization (6) for a larger set of samples {Qk}. Then fit again (8),
now with the bigger basis Ψ, to get a better approximation. This
procedure can be repeated until sufficiently large sample set {Qk}
has been trained with by a deformation operator DΦ,Ψ.

Since the initial guesses provided by these rough approximations are
already close to the ground truth, only a few iterations are typically
required on average to converge. This is in contrast to the hundreds
and thousand required if we were to start the optimization from the
rest pose.

Defining the samples {Qk}. A reasonable
choice of samples Qk = (qk,1, . . . ,qk,n) ∈
R2×n, k = 1, ..,m is to choose, qk,` uniformly
at random in disc of some radius centered at the
handle p` (see inset). Other options we explored
are uniform circles centered at p`, Gaussian cen-
tered at p`, and the Voronoi cells of p` w.r.t. P, or
a combination of these.

Source ARAP Symmetric ARAP

Figure 6: variational deformations using different energies. Note
how ARAP generates cusps and foldovers and isometric distortion
introduces scaling, while, in contrast, the symmetric ARAP deforma-
tion behaves well.

4 Evaluation

This section summarizes the evaluation and experiments performed
using the algorithm for approximating deformation operators.

Deformation energies. The choice of energy E is instrumental to
achieving a useful deformation operator. One of the most popular de-
formation energies is the As-Rigid-As-Possible (ARAP) energy. The
ARAP energy of a deformation fΦ (see Eq. (1)) for any piecewise-
linear basis Φ over a triangulation is defined as

E(fΦ(·)) =
∑
t∈F

[
(Σt − 1)2 + (σt − 1)2]At, (10)

where Σt, σt are the singular values of the constant differential of
fΦ restricted to triangle t of area At.

The ARAP energy has a couple of well-known drawbacks: It tends to
create cusps at the handles, and the deformation can have foldovers.
Therefore, we chose to test our framework mostly with a novel
variant of the ARAP energy, which we call Symmetric ARAP (S-
ARAP). This energy is defined by replacing the distortion term in
(10) with

(Σt − 1)2 +
(
σ−1
t − 1

)2
. (11)

The S-ARAP energy has the two key properties: Firstly, it treats
shrinkage and expansion symmetrically and as a consequence also
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Figure 7: Bar deformations using polynomials and TPS basis functions. Clearly, using linear basis functions is not enough to produce high
quality results. Switching to quadratic functions already shows great improvement, while enriching the basis with cubic or using TPS further
enhances the quality of the deformation.

prevents triangle flip (the energy explodes at degenerate triangle
configuration). Secondly, it maintains the elastic look of ARAP.
Fig. 6 shows a comparison between ARAP and S-ARAP when
used to deform a gingerbread man model. Note how the traditional
ARAP energy causes cusps and foldovers in the deformation, and
the isometric distortion energy scales the shape, while the S-ARAP
energy behaves well.

Trajectories. Trajectories were mentioned in 3.1. A trajectory is
a function encoding the movement of a fixed spatial point x as a
function of the handles Q. Figure 5 shows another visualization of
trajectories of the ground truth S-ARAP deformation operator com-
pared to its approximation with linear, quadratic and TPS (Φ,Ψ)-
DefOp. Note that the linear (Φ,Ψ)-DefOp can only represent linear
trajectories, while quadratic and TPS can represent more general
trajectories that allows handling rotations better.

Approximation capabilities. Fig. 7 shows a case study compar-
ing different handle bases Ψ in deformation operator approximations
to the S-ARAP. In this example, we use a relatively small sample size
(m = 17 samples) and compare the deformations achieved using
various bases. We show how the deformation changes as the handle
moves from one side of the sampling region to the other. Fig. 11
depicts more approximation results for a set of general shapes.

Figure 2 shows (Φ,Ψ)-DefOp approximations of ARAP. in this case,
Φ is a reduced spatial subspace with 100 basis functions, and the
TPS handle basis contains 500 RBF. To show that the approximation
is robust, we picked several handle positions at random, and compare
them to the ground truth. It can be observed that in general, the
approximation becomes better, that is, more similar to the ground
truth, as more handle basis becomes larger and richer.

Convergence. In Fig. 8 we show a convergence graph of our
approach, as the number of samples m increases. We compute an
approximated deformation operator for the Aleph model (see Fig. 9),
using up to 400 samples. For each approximation, we compute the
error based on Eq. (8a), divided by the number of vertices, based on
a set of 100 different samples. The bounding box of the model is
the unit square. Note that polynomials have limited approximation
capabilities, and so increasing the number of samples can only
reduce the error to a limit. TPS on the other hand can, in theory,
reduce the error to zero.

Performance. Our implementation was made in entirely in Mat-
lab, using L-BFGS to compute the samples. We used an i7 machine
clocking at 3.5 Ghz, with 64GB RAM. We compute the (Φ,Ψ)-
deformation operator using the process described in Section 3.3.
Afterwards, its evaluation requires only an evaluation of the handle
basis functions at the specific position, followed by a matrix-vector
product. This part can be computed at extremely fast rates, com-
pared to the preprocess step. We evaluated the performance of this
step on a much weaker machine, an i7, 1.8 Ghz, with 8 GB RAM.
Refer to the included video, where we demonstrate several short
deformation sessions. We summarize the timings for the different
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Figure 8: Convergence of the approximation as the number of
samples m increases, for the Aleph model (See Fig. 9) . Note that a
minimum number of samples is required, depending on the number
of handles (5 in this case) and the size of the basis, in order to use
up all of the degrees of freedom in the model.

Source Linear n=30 Linear n=100

TPS n=30 TPS n=100 Ground truth

Figure 9: Convergence of the approximation as the number of
samples increases, for the Aleph model, see text and Fig. 8 for more
details.
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Figure 10: Variational deformations and trajectories based on
global (top) and local (bottom) optima. Note the different positions
of the discontinuities in the trajectories.

components in Table 1.

5 Conclusions, Limitations and Future Work

We have introduced a method for approximating complicated, non-
linear deformation operator using a finite-basis deformation operator.
We have demonstrated that such approximation produces comparable
deformations to the non-linear operator in fraction of the time.

A mentioned before, variational deformation operators can have
discontinuities. These are the result of defining the deformation
operator using the minima of a non-convex deformation energy.
Consequently, in some cases, two close handle positions can result
in very different deformations (See Fig. 10). In practical applica-
tions, however, finding the global minimum is not guaranteed, nor
desired. Usually, as the user drags a handle, the previous deforma-
tion is used as an initial guess for finding a nearby local minimum
of the deformation energy, which serves as the new deformation.
This results in a smoother deformation operator in some cases, but
also introduces some ambiguity into the problem, since the deforma-
tion depends on previous deformations. In Fig. 10 we show how a
smoother trajectory looks, when initializing the optimization prob-
lem with a previous deformation. In general, however, we cannot
anticipate what the correct local minimum is, since it can change
during interaction. We consider this a limitation of our approach,
and an interesting avenue for further research. A possible resolu-
tion would be to consider utilizing a multi-valued approximation
approach in order to reproduce the correct deformation.

Lastly, we note that in our setup, the positions of the handles in the
rest pose (i.e., p`) remain fixed. However, in reality, the user may
wish to reposition them without the need to repeat the preprocess
computation. This might be possible if one manages to incorporate
p` as variables into our problem.

An interesting and natural future work direction is to extend the
approach to 3D. The first step would be to examine the trajectories
of points in 3D and determine whether they can be approximated
well with a finite basis. We leave that for future work.
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Figure 11: Various result obtained in different settings. In all of these examples, excluding the ground truths, deformations are achieved in
real-time (see also the included video). Note that all of these approximation are visually very close to their respective ground truths
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Appendix A

We derive a closed form expression of Eq. 8a for the general case
where Φ is a reduced subspace. We assume that the spatial basis
function ϕi are given as linear combinations of a set of primitive
basis function, e.g.hat-functions, such that Φ = DΦ̃. To make the
derivation more concise, we write the (Φ,Ψ)-DefOp in matrix form.

DΦ,Ψ(x,Q) :=
(

Φ(x)TCνΨ(Q)
)
ν
, (12)

where Cν = (Cνij)ij is a matrix containing the coefficients for
ν = x, y. Assuming DE(x,Qk) is expressed in the spatial basis Φ̃,
namely

DE
Φ(x,Qk) =

∑
τ

C̃τkϕτ (x) =
(
C̃ν
kΦ̃(x)

)
ν
,

then we have,

E =

m∑
k=1

∫
Ω

∥∥∥DE
Φ(x,Qk)−DΦ,Ψ(x,Qk)

∥∥∥2

dx = (13)

m∑
k=1,ν

∫
Ω

∥∥∥C̃ν
kΦ̃(x)−Ψ(Qk)TCνΦ(x)

∥∥∥2

dx = (14)

m∑
k=1,ν

∫
Ω

∥∥∥C̃ν
kΦ̃(x)−ΨT

kC
νDΦ̃(x)

∥∥∥2

dx = (15)

m∑
k=1

∫
Ω

∥∥∥(C̃ν
k −ΨT

kC
νD
)

Φ̃(x)
∥∥∥2

dx. (16)

where we have made ΨT
k := Ψ(Qk)T . By expanding (13) we get∑

k,ν

(
C̃ν
k −ΨT

kC
νD
)
A
(
C̃ν
k −ΨT

kC
νD
)T

(17)

where Ai,i′ =
∫

Ω
ϕ̃i(x)ϕ̃i′(x)dx is the well-known mass matrix.

By expanding (13) we get,

E =
∑
k,ν

ΨT
kC

νDADT (Cν)TΨk−2ΨT
kC

νDA(C̃ν
k)T+(C̃ν

k)TAC̃ν
k

(18)
This can be written using the matrix trace as follows,

E =
∑
ν

[
tr
(
CνDADT (Cν)TB

)
+ tr (EνCνDA)

]
(19)

where B =
∑m
k=1 ΨkΨT

k and Eν = −2
∑m
k=1(Ψk)T C̃ν

k.

The constraints (8b) and (8c) can be expressed as a linear system

ΨT
0 C

ν = Cν
0 , Cν

0DΦ(x) = ν (20)

ΨT
kC

νΦ(p`) = qνk,` (21)

where Ψ0 are the values of the spatial basis functions at the initial
position, and Cν

0 are the coefficient vectors for the spatial basis that
reproduce the rest pose. These equations can be vectorized w.r.t. Cν

using the Kronecker product and written as a large system

Hvec(Cν) = b.

In order to solve (8), we write the Lagrangian of the problem,

L = E + λT (Hvec(Cν)− b)

The derivative of (19) is

∇CνE = 2DADT (Cν)TB + DAEν . (22)

and by vectorizing we get

∇vac(Cν)E = (B ⊗ 2DADT )vec(Cν) + DAE.

And the linear system to solve easily follows.


