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Fig. 1. Our method produces high quality UV maps, balancing the number of seams and the distortion of the map. The method runs at interactive rates and
can provide artists with complete control over the UV map if desired. We offer interactive tools such as bounding boxes for packing islands (left), painting of
regions that attract or discourage seam creation, and semi-automatic removal of overlapping regions. Each tool provides interactive feedback, drastically
simplifying the design of complex UV maps.

We propose a UV mapping algorithm that jointly optimizes for cuts and

distortion, sidestepping heuristics for placing the cuts. The energy we mini-

mize is a state-of-the-art geometric distortion measure, generalized to take

seams into account. Our algorithm is designed to support an interactive

workflow: it optimizes UV maps on the fly, while the user can interactively

move vertices, cut mesh parts, join seams, separate overlapping regions,

and control the placement of the parameterization patches in the UV space.

Our UV maps are of high quality in terms of both geometric distortion and

cut placement, and compare favorably to those designed with traditional

modeling tools. The UV maps can be created in a fraction of the time as ex-

isting methods, since our algorithm drastically alleviates the trial-and-error,

iterative procedures that plague traditional UV mapping approaches.
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1 INTRODUCTION
UV maps are ubiquitously used in computer graphics to map reg-

ularly sampled 2D data, such as colors, normals, or displacements,

onto surfaces embedded in 3D. The design of UV maps has received

extensive attention in the research community in the last three

decades. It is traditionally divided into two steps: the computation

of optimal cuts, also called seams, and the minimization of the distor-

tion of the resulting patches as they are mapped onto the plane. The

two sub-problems are very different in nature: the former is discrete

and combinatorial, since the cuts are selected from a discrete set
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of mesh edges, and the latter is continuous, since the distortion

depends on the UV coordinates of the mesh vertices. The cuts are

typically computed first and heavily affect the quality of the result-

ing parameterization; if the quality of the UV map is not sufficiently

good for the intended application, the user must alter the cuts and

re-run the parameterization computation, possibly repeating this

trial-and-error loop several times.

We present the first approach to jointly optimize cuts and geomet-

ric distortion. Our algorithm minimizes state-of-the-art distortion

measures at interactive rates while identifying an adequate set of

mesh edges to cut. While previous methods optimize for either

cuts or distortion alone, our formulation automatically introduces

cuts and minimizes distortion within the same energy optimization

process. The key idea of our algorithm is to model the UV map

by parameterizing each triangle individually, using an attraction

energy to encourage the parameterization to be continuous over

matching edge pairs. A sparsity inducing norm over the attraction

energy results in only a few edge pairs not merging, and these are

the seams of the final UV map. Intuitively, this corresponds to a

relaxation of the classical binary notion of seams: instead of tag-

ging each edge as either a seam or a regular edge, we allow it to be

something in-between during the optimization. As the algorithm

converges, the edges come closer and closer to either becoming

seams or regular edges, until they are close enough to be “snapped”

to one of the two binary choices.

While our algorithm can already be useful in automatic mode, its

advantage is supporting the interactive workflow that is preferred

by digital artists: our optimization runs in the background, while

the user can interactively move vertices, cut mesh parts, join seams,

remove self-overlapping regions and pack the resulting patches in

the UV space (see Fig. 1 and the accompanying video). All such

constraints can be either hard, overriding the energy-minimizing

decisions favored by our algorithm, or soft, steering the optimization

in the desired direction.

We expect our algorithm to impact the design of UV maps, since

it eliminates the frustrating trial-and-error pipeline that is currently

commonplace. Furthermore, it offers an interactive interface that en-

ables artists to manually specify the semantically relevant portions

of the map, while automatically handling the remaining optimiza-

tion in the background. We provide a reference and open-source

implementation of our method (see Section 4) to ensure replicability

of our results and encourage integration into existing tools.

2 RELATED WORK
Surface parameterization, or UVmap construction, is widely covered

in the literature [Hormann et al. 2007; Sheffer et al. 2006]. The sub-

problems of computing the cuts and minimizing distortion have

been extensively studied – however, mostly separately.

2.1 Minimizing distortion
Most applications require the parameterization mapping to be as

isometric as possible, i.e., preserve angles and areas as much as pos-

sible. A large number of distortion measures have been proposed to

quantify the discrepancy between a given mapping and an isometry.

A chosen distortion measure is typically optimized by the UV map

over the space of per-vertex UV assignments.

Conformal distortion measures, which only penalize angular dis-

tortion, can be expressed as quadratic functions of the UV variables

[Desbrun et al. 2002; Lévy et al. 2002], leading to a sparse least-

squares problem, which is very efficient to solve. Unfortunately,

distortion measures that also consider area (e.g. [Hormann and

Greiner 2000; Liu et al. 2008; Sander et al. 2001]) are nonlinear and

non-convex, and hence challenging to minimize. This has elicited

the search for good algorithmic and numeric solutions tailored to

this specific purpose.

Among the most successful approaches, local/global optimization

[Liu et al. 2008] alternates between computing a perfectly isomet-

ric but discontinuous mapping per face, and stitching it by global

optimization to create a continuous but no longer isometric map-

ping. Our approach borrows the fruitful idea of assigning separate

per-corner variables to each vertex, one for each incident triangle,

effectively detaching each triangle in UV space.

Recent works formulate sophisticated and highly non-convex ob-

jective functions that enable finding nearly isometric and inversion-

free parameterizations by continuous optimization, which works

by minimizing an iteratively updated convex proxy [Kovalsky et al.

2016; Rabinovich et al. 2017; Smith and Schaefer 2015]. We propose

to take another leap forward and include cut optimization together

with a state-of-the-art distortion measure, in the same objective

function. This is far from trivial because cut optimization and dis-

tortion minimization have drastically different behaviors: the latter

tends to spread the error equally over the surface, while the former

must concentrate the error in a discrete set (the cut vertices) and

leave it at zero everywhere else, due to the binary nature of cutting.

Hence, intuitively, an objective function that accommodates both

cuts and low distortion must be extremely non-convex.

2.2 Optimizing cuts
The task of automatic computation of cuts is still an open prob-

lem despite extensive research on mesh parameterization. Many

parameterization methods accept cuts as input and compute the

mapping of a surface that has the topology of one or several disks.

Earlier methods require the shape of the cut in the UV domain to

be specified as well (e.g. [Floater 2003]). More recent free-boundary

methods optimize the shape of the whole 2D patch, including the

boundary (e.g. [Desbrun et al. 2002; Lévy et al. 2002; Liu et al. 2008;

Sheffer et al. 2005]). Current work succeeds to avoid local and global

self-intersections while leaving the boundary free and minimizing

an isometric distortion measure [Smith and Schaefer 2015].

In several works, cuts are identified as part of the parametrization

process. They can be roughly categorized into three different groups,

detailed below.

Cuts for remeshing applications. A large portion of recent parame-

terization literature tends to focus on quadrilateral remeshing appli-

cations, while we are interested in texture mapping. In remeshing

oriented parameterization, cut placement is largely inconsequential,

as long as the two sides of every cut match in the UV space up

to a rotation by an integer multiple of π/2 and an integer number

of translation steps. A cut with this property is sometimes called

“griddable”, as it can be seamlessly traversed by a grid, and the pa-

rameterization is then termed “seamless”. The problem of good cut
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placement is therefore often disregarded in remeshing (see, e.g.,

[Bommes et al. 2009] and the survey [Bommes et al. 2013]). The

placement of cone singularities, which can be understood as end-

points of griddable cuts, is still crucial, and can be the subject of a

separate optimization [Ben-Chen et al. 2008; Myles and Zorin 2013].

Some works optimize the positions of the griddable cuts on the mesh

(starting from the cones) for attributes like straightness or field align-

ment, and shortness [Campen and Kobbelt 2014; Tarini et al. 2011].

The interactive design of the singularity graph [Takayama et al.

2013; Tong et al. 2006] can also be seen as a special way of pre-

scribing griddable cuts. Unfortunately, in the context of traditional

texture mapping applications, griddable cuts are less useful and

impose unnecessary constraints that are only necessary for the case

of quadrilateral meshing. Although they can offer certain benefits

for specific types of texture mapping [Ray et al. 2010], griddable

cuts are not strictly required and hardly ever used, e.g., in the game

industry. One key reason is that general cuts, but not griddable ones,

serve the important purpose of trading Gaussian curvature inside

patches for line curvature at their boundary, reducing distortion.

This consideration is the basis for the algorithms described below.

Adding cuts while minimizing distortion. Many methods generate

new cuts as a means to counter excessive local distortion. One way

is to alternate between minimizing a distortion energy and greedily

placing additional cuts every time the distortion exceeds a certain

threshold, see e.g. [Gu et al. 2002; Sorkine et al. 2002]. An alternative

is to first identify good candidate locations for cuts by analyzing

the Gaussian curvature and visibility, see e.g. [Ben-Chen et al. 2008;

Sheffer and Hart 2002]. All these methods attempt to balance distor-

tion and cuts as part of the same iterative procedure; however, the

cut placement relies on heuristics without directly being part of a

global optimization of the map, unlike in our approach.

Generating cuts by mesh partitioning. Many parameterization

methods developed in the course of over three decades partition the

initial mesh into separate patches (i.e., separate connected compo-

nents) with disk topology, thereby defining cuts as boundaries of

the partitions. The partitioning can be guided by a variety of consid-

erations, for example by clustering triangles according to features

[Zhang et al. 2005], normals [Maillot et al. 1993] or developability

criteria [Julius et al. 2005], seeding and expanding regions [Lévy et al.

2002], computing a centroidal Voronoi tessellation on the surface

[Boier-Martin et al. 2004], simplifying the mesh and using the poly-

gons of the base mesh to define charts [Khodakovsky et al. 2003],

tracing cuts following a cross field [Campen and Kobbelt 2014], or

abiding to a curved skeleton of the surface [Usai et al. 2015] (each

item in this list is represented by one citation of many). While the

choices behind these approaches are all inspired by valid, general

considerations regarding their effect on the final parameterization

quality, the a priori assumptions are indirect and cannot be expected

to lead to optimal UV maps. Typically, the patches tend to be smaller

and more numerous than desirable. An additional limitation is that

by construction, cuts can only appear between elements belonging

to different patches. This imposes an artificial constraint, which is

often violated in many good cut layouts, such as the typical man-

ually designed ones, where cuts are free to appear also between

polygons belonging to the same patch.

Bypassing the need for cuts. A long lived trend in the context of

research on texture mapping strives to bypass rather than solve the

task of identifying good cuts [Tarini et al. 2017], either by providing

a complete substitute for 2D parametrization and 2D texture map-

ping altogether [Benson and Davis 2002; Burley and Lacewell 2008;

Christensen and Batali 2004; Lefebvre and Hoppe 2006; Tarini et al.

2004; Yuksel et al. 2010], or by diminishing some of the detrimental

effects of cuts, thus making their positioning less crucial or even

inconsequential [Lefebvre and Dachsbacher 2007; Purnomo et al.

2004; Ray et al. 2010; Tarini 2012, 2016]. All these methods pro-

vide new perspectives and tradeoffs. At the same time, the industry

almost unanimously sides with the traditional format of UV and

texture maps, probably due to a combination of benefits that they

offer, which are currently not matched in full by any of the alterna-

tives. Aside familiarity, these include, in terms of content creation:

generality, full adaptability, fruitful analogy between texture and

traditional 2D images (exploited in a variety of ways, like direct

painting on 2D textures), and in terms of rendering: simplicity, time

and resource efficiency, paramount GPU-friendliness, the ability to

apply filters and pre-filtering (MIP-mapping). For all these reasons,

we believe that the problem of defining good cuts in UV mappings

remains highly relevant.

Existing tools for manual cut placement. In the graphics related

industry, the task of producing UV mappings is invariably com-

puter assisted rather than fully automatic; distortion minimization

is successfully delegated to automatic algorithms, while the place-

ment of cuts usually requires manual intervention by trained digital

artists. Specialized interfaces and sophisticated interactive tools are

provided by all modern modeling packages, yet the task remains

time consuming (see the accompanying video). If the input mesh

is irregular, the difficulty increases because the UV mapper cannot

quickly select consecutive edges (so-called edge loops) to elect as

cuts. Our method offers an improvement, as it removes the necessity

of full manual cut selection and does not rely on regularity of the

mesh connectivity.

3 UV OPTIMIZATION METHOD
One goal of UV mapping is to parameterize a mesh with minimal

distortion and minimal length of cuts. One extreme is to do the

minimal cuts necessary to induce disk topology, which results in

highly distorted triangles useless for texture mapping applications,

and the other extreme is placing cuts on all internal edges, such

that each triangle is mapped without any distortion [Burley and

Lacewell 2008]. In this work, we propose a method to interactively

explore the solution space.

In our formulation, we treat the original mesh

as a triangle soup, where each triangle is separated
from the others. Every interior edge is duplicated

and appears as two copies in the triangle soup.

Each vertex is duplicated several times according

to its degree, and the copies are called corners. We

denote the vertices, edges and faces of the original

mesh by vi , ej , fk , and use the subscripts i, j,k to

refer to vertex-, edge- and face-related quantities.

For instance,Ak is the area of face fk , and lj is the
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More cuts Fewer cuts

Fig. 2. Balancing between cuts and distortion. The example on the left shows
a less distorted parameterization at the cost of more cuts, i.e. discontinuities.
The example on the right is more distorted, but also more continuous.

length of edge ej . We use mixed subscripts to identify edge copies

and corners in the triangle soup, e.g., ejk refers to the copy of edge

ej that is incident to face fk , and vik refers to the corner vertex

originating from vi and residing in face fk . The variables in our

optimization are the positions of the corners in UV space, denoted

by X = {xik = (Uik ,Vik )}. Finally, we use fk (X) to refer to all the

variables related to fk , meaning the three corner UVs xik of fk (and

similarly, ej (X), ejk (X), etc.).
A parameterization of a triangle soup is amapping of each triangle

to the plane. A cut occurs when two copies of an edge are separated

and do not completely coincide. In the broadest sense, our approach

consists in solving the following optimization problem:

min

X
E(X) = min

X
(1 − λ)D(X) + λ S(X), (1)

where E is the total objective function, D is a distortion objective

(such as preservation of angles or areas), S is a separation objective,

and the parameter λ controls the balance between the two objectives
(Fig. 2). The two objectives are defined as a weighted sum over the

faces and edges, respectively:

D(X) =
∑

face k

Ak Ed(fk (X)) , S(X) =
∑

edge j

lj Es
(
ej (X)

)
, (2)

where E
d
is a triangle distortion measure and Es is an edge sepa-

ration measure. While distortion measures have been thoroughly

discussed in previous work (Sec. 2), there is less relevant work

related to separation measures. Identifying an appropriate such

measure is one of the main challenges of this work. We discuss our

choice next and briefly address distortion measures afterward.

The separation measure. Given two copies of an edge positioned

in UV space, our goal is to find a meaningful measure of their

separation. A somewhat similar problem has been discussed in the

field of discontinuous Galerkin methods [Cockburn et al. 2000],

where nonconforming (i.e., discontinuous) finite elements are used.

Babuška and Zlámal [1973] proposed to measure the L2 norm of

the jump along the edge. A more modern approach uses the notion

of numerical flux, which is usually defined as a combination of the

integral of the average and the difference of a function along the

edges [Arnold et al. 2001]. Recently, another separation measure

appeared in [Fu and Liu 2016], utilized for computing bijective maps.

This measure, called an edge-assembly constraint, is essentially the

norm of the difference between the two edge vectors.

In our setting, we observe that an edge can have one

of three distinct states when considering cuts: It can be

uncut, half-cut (where one of the endpoint vertices is

split but the other is not), and fully cut (see inset). The

measures described above cannot distinguish between

fully cut and half-cut states. Instead, we propose to

consider each pair of corners at each of the edge end-

points independently. That is, the separation measure

includes both distances between the two pairs of end-

points. More precisely, let fk1 and fk2 be two faces

that share an edge ej with two endpoints vi ,vi′ . We define a corner

separation measure applied to both pairsvi j (X) andvi′j (X), i.e., the
two pairs of corners at the endpoints of ej :

Es(vi j (X)) = s
(��xik1 − xik2

��) ,
Es(vi′j (X)) = s

(��xi′k1 − xi′k2
��) , (3)

where s(·) is a monotonic weight function defined later. We then

rewrite the problem in Eq. (2) as follows:

minimize for X E(X) = (4)

= (1 − λ)
∑

face k

Ak Ed(fk (X))

︸������������������︷︷������������������︸
D(X)

+ λ
∑

{i,k1,k2 }∼j
lj s

(��xik1 − xik2
��)

︸������������������������������︷︷������������������������������︸
S(X)

,

where the second sum is over all corners vi j and faces fk1 , fk2
incident to edge ej .

We define s(·) to achieve two goals: (i) we want to have as few cuts

as possible, and (ii) if an edge is cut, there is no reason to encourage

its two copies to remain spatially close to each other in the UV

domain. The ideal function that satisfies these desiderata is:

s(t) =
{
0, t = 0

1, otherwise.

For this choice for s , Eq. (4) is an L0-regularized optimization prob-

lem, which is notoriously difficult to solve directly. In the following

we discuss our approach for solving it using homotopy optimization.

The distortion measure. Since most texture mapping applications

favor isometry, we use the symmetric Dirichlet energy [Smith and

Schaefer 2015] for all results in this paper, defined by

E
d
(fk (X)) = ‖Jk (fk (X))‖2F +

��J−1k (fk (X))
��2
F , (5)

where Jk (fk (X)) is the Jacobian of the mapping on face fk and

‖·‖F is the Frobenius norm. This measure is indeed minimal for

rotations, and it has several additional favorable properties. First, it

infinitely penalizes inverted elements, preventing them. Second, it

is computationally efficient since it requires rather few elementary

operations to evaluate. If required by specific applications, other

energies, such as the conformal AMIPS [Fu et al. 2015], could be

easily minimized by our algorithm with minimal modifications.
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1

Fig. 3. Left: Homotopy optimization. The objective function E is first rad-
ically smoothed to obtain Eδ (top); it is then iteratively sharpened back,
and a new minimum is found starting the optimization in the previous
minimizer. As δ becomes smaller, Eδ approaches the original E and the
found minima converge to a minimum of E (bottom). Right: Plots of our
smooth approximations sδ (t ) (colored curves) and the discontinuous func-
tion s(t ) (in black) used in the separation measure. As δ approaches zero,
sδ (t ) sharpens and approaches s(t ).

3.1 Homotopy optimization
With the choices of separation and distortion energies above, Eq. (4)

becomes non-smooth and non-convex. It is thus, difficult and com-

putationally expensive to minimize directly. Nevertheless, practical

algorithms such as iteratively reweighted least-squares [Daubechies

et al. 2010], L1 relaxation [Boyd and Vandenberghe 2004], and the

homotopy optimization method perform well for such an energy.

We use an approach similar to the latter, as explained below.

The homotopy optimization technique, also known as the con-

tinuation method [Allgower and Georg 2003], is a technique for

solving highly non-convex problems. Similar to methods such as

graduated optimization and deterministic annealing [Rose 1998],

it eliminates many local minima by smoothing the objective func-

tion, then gradually sharpening it back [Mobahi and Fisher 2015].

In each iteration, the algorithm finds a local minimum, using the

previous minimum as the starting point (see the sketch in Fig. 3, left).

Specifically, given an objective E(X), the method requires a family

of functions Eδ (X), for a parameter δ > 0 controlling the smooth-

ness, such that limδ→0
Eδ (X) = E(X); δ is updated in each iteration

according to a certain strategy (see later), until convergence. See

Algorithm 1 below.

Algorithm 1: Homotopy Optimization

Input:
Eδ (X), δ > 0, such that limδ→0

Eδ (X) = E(X)

δ ← δ0
X(0) ← argminX Eδ (X)
n ← 1

while criterion not reached do
Update δ according to strategy

X(n) ← argminX Eδ (X) using X(n−1)
as initialization

n ← n + 1

SeamlessL0 penalty. Since the problematic non-convexity of Eq. (4)

stems from the definition of s(t), we need to find an appropriate

family of functions sδ (t) which smoothly approximate it. Li et al.

Fig. 4. The influence of the parameter δ on the generated UV map. Red
hue on the 3D mesh marks edges with high separation energy.

[2012] introduce such a smooth approximation, termed the seam-
less L0 penalty. Inspired by their proposal, we define the following

approximation (Fig. 3, right):

sδ (t) =
t2

t2 + δ
. (6)

The argument t is squared so that sδ (t) is differentiable at zero. It
is easy to verify that limδ→0

sδ (t) = s(t); although the functions

sδ (t) are not globally convex, they are convex within a certain

distance from the origin (defined by a closed-form formula) and are

significantly easier to minimize than the discontinuous s(t).

The parameter δ . The standard, fully automatic version of continu-

ation method offers guarantees of convergence to a global minimum

only under certain conditions on Eδ and on the strategy to update

δ [Allgower and Georg 2003]; instead, we opt for an interactive ver-

sion where δ is left as a parameter that users can manipulate to steer

the optimization towards the goal they have in mind. The influence

of δ on the resulting UV map is demonstrated in Fig. 4. In a basic

workflow, the user starts with a relatively high δ ; in this situation,

all edges are cut, but corner pairs still stay close together. The result

is in many cases very similar to single-patch parameterization (if the

corners were to be snapped back together). As the user decreases δ ,
some of the corner pairs remain close, but others start to separate,

generating a visible cut. Further decreasing δ lumps close corners

together, making the map continuous along their edges, while the

remaining corners stop influencing each other.

3.2 Numerical optimization
To solve Eq. (4), we use Newton’s method with line search. In each

iterationn, where the current iterate isX(n)
, we solve for the Newton

search direction p(n):

H
(n)
E

p(n) = −g(n)
E
, i.e., (7)(

(1 − λ)H(n)
D
+ λH

(n)
S

)
p(n) = −(1 − λ) g(n)

D
− λ g

(n)
S
, (8)

where g
(n)
E
, g

(n)
D
, g

(n)
S

and H
(n)
E
,H

(n)
D
,H

(n)
D

are the gradients and Hes-

sians of the total energy E, distortion energy D and separation

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.



215:6 • Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung

energy S at X(n)
, respectively. We then obtain the next iterate by

X(n+1) = X(n) + α p(n), (9)

where step-size α is found with a line search; we use the strategy by

Smith and Schaefer [2015] to ensure that no triangle gets flipped.

To find the gradients and Hessians of D(X), we iterate over the
faces and accumulate the per-face gradients and modified Hessians

using [Shtengel et al. 2017]. This ensures that the overall modified

Hessian is positive definite while avoiding costly SVD computations

of each face Hessian, as was done in [Fu and Liu 2016]. For the

separation function S(X), we derive closed-form expressions for the

gradient and positive modified Hessian of sδ in Appendix A.

4 FRAMEWORK IMPLEMENTATION AND RESULTS
Implementation and performances. We ran our experiments on a

12-core Xeon clocked at 2.7 GHz, using the Pardiso solver [Kuzmin

et al. 2013; Schenk et al. 2008, 2007] for the linear system solve in

Eq. (8). For the mesh sizes we experimented with, performances

scale roughly linearly, one iteration requiring 15ms for 3K trian-

gles, and about 100ms for 20K triangles. A reference, open-source

implementation is available at https://github.com/Roipo/Autocuts.

Parameters tuning. The optimization process runs indefinitely in

the background, until the user is ready to save the result. We let

the user interactively control the parameters δ and λ. Parameter λ
is initialized at 0 and controlled freely in the full [0, 1] range. δ is

initialized at 1 and modified by halving or doubling it.

Initialization. Since we treat the input mesh as a triangle soup,

initialization of the UV map can simply be done by placing the

triangles individually in the plane with a rigid transformation: our

distortion energy is rotation invariant, so the specific transformation

used does not affect its minimum. Our method is extremely robust

to different initializations, as demonstrated in Fig. 5.

Finalizing the UV map. Once the user is satisfied with the result,

we generate a UV map that is continuous, except across the seams.

To achieve this, we iterate over all pairs of corners and unify them

at their average if their separation energy is lower than 0.5 (see for

example Fig. 5 and 7). The UV map is also uniformly scaled and

translated to fit into the canonical [0, 1]2 texture space.

Unassisted cutting. Our method can achieve high quality results

with no user input, or very little input in the form of λ and δ values

(see Fig. 17 for examples of obtained UV maps). In contrast, profes-

sional artists must provide a lot of manual input in state-of-the-art

software in order to cut a mesh for UV mapping. To the best of our

knowledge, the most advanced commercial tool for UV mapping

is ZBrush’s UV Master [Pixologic 2017]. This tool allows the user
to paint regions where cuts should appear or be avoided, and then

provides a map; the user is then tasked with repainting the regions

until the desired result is obtained. From our experiments with this

tool, we suspect that the cuts are computed a priori, before the cut
mesh is parameterized. We compare our method in unassisted mode

against UV Master with substantial user input on the Bumpy Cube

in Fig. 6: our method properly balances between cuts and distortions,

and places the cuts along the “edges” of the cube, while the ZBrush

result seems somewhat random. See Fig. 17 for more results.

Tutte Random

(took 4 iterations) (took 8 iterations) (took 28 iterations)

Initialization

Snapped UVs

Rigid

Converged

Fig. 5. Our method is extremely robust to bad initialization. The results
obtained starting from Tutte (left), a rigid transformation of each triangle
onto the UV plane (middle), and a completely random set of positions (right)
are almost identical (up to a rotation and translation). For all results in the
paper, we used the method in the middle, due to its efficiency and simplicity.

Assisted cutting. In many cases, the user wishes to create (or

avoid) cuts in specific regions. We enable this by letting the user

select the edges whose weight should be modified in the separation

objective, either by clicking on them or painting. Encouraging cuts

is simply implemented by reducing (resp. increasing) the weight of

the relevant terms for the two pairs of corners in the optimization

problem in Eq. (4). We observe that in many cases, it is sufficient to

seed a cut along a single edge, and the rest of it propagates on its

own during the optimization (see Fig. 7). Additionally, we allow the

user to deform, tear, and attach the UV island simply by dragging

(see, e.g., Fig. 1 and the attached video).

Bounding rectangles. In many situations, it is useful to require the

UV shape to be bounded by a certain UV rectangle. This can improve

texture space efficiency and aid packing. We enable interactive

drawing and manipulation of bounding rectangles in UV space, and

we add a soft constraint to the objective function, as a “box” energy

B penalizing UV corner positions outside the relevant rectangle R.
We add B to our objective in (4), with a certain weight β (in our

system we used β = 100). Specifically, R is defined as the Cartesian

product of two given intervals, R = [ u , u ] × [ v , v ], and B is the

sum, over all affected UV positions x = (u,v), of

c( u , u ) + c( u , u ) + c( v , v ) + c( v , v ) (10)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.
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Initialization ZBrushOur result

Fig. 6. Result of an automatic UV mapping of the Bumpy Cube using
our method, without user interaction and with default parameter settings,
which produces an intuitive cut along the edges of the cube. In contrast, the
assisted UV map of ZBrush fails to find this cut even with extensive manual
suggestions, which we provided by manually painting candidate regions
(purple regions, bottom right).

where c(a,b) is a C1
function penalizing a > b:

c(a,b) =
{
0, a ≤ b

(a − b)2, a > b
(11)

See Fig. 8 and the attached video for examples of using bounding

rectangles.

UV maps for quad meshes. Our approach also supports the design

of UV maps for quadrilateral or polygonal meshes, which are com-

mon in the graphics community. Since the distortion measure is

defined for triangles, we simply triangulate all polygons and prevent

the introduced edges from separating by increasing the weights of

their associated separation energy terms by a factor 100 (Fig. 12).

UVmaps for irregular meshes. In some applications, such asmodel-

ing for video games, and in stark contrast with geometry processing,

meshes with highly irregular faces and non standard topologies are

acceptable. Since our approach treats the mesh as a triangle soup,

we can handle such meshes without any special considerations. In

Fig. 10 we show an example of an irregular mesh and the UVs we

obtained using our system. Note that despite its appearance as a

single manifold, the mesh is in fact comprised of many connected

components, hence the numerous patches we obtain in the UV map.

Comparison with [Sorkine et al. 2002]. We empirically compare

our method with [Sorkine et al. 2002]. This method also targets low

distortion and small number of cuts, but does so in a greedy manner.

Starting from an isometrically parameterized single triangle, the

method appends more triangles to it to create a patch, unless doing

so exceeds a distortion bound or creates self-intersections. When no

additional triangle can be added, the current patch is finalized and

a new one is seeded from another triangle. In Fig. 11 we show the

(a) (b) (c)

Fig. 7. In many cases, manually cutting one edge triggers the creation
of a complete cut line. (a) User force-cuts a single edge in the highlighted
region. (b) The cut automatically propagates through the mesh, considerably
reducing the distortion. (c) Final result.

Fig. 8. Left: unconstrained parameterization; right: adding bounding rec-
tangle constraints.

result on the Octopus mesh, for a specified distortion bound of 3 and

an area-to-perimeter ratio of 10000; the map is over-segmented, and

contains numerous patches consisting of a single triangle or short

triangle strips. In contrast, the result obtained with our interactive

system features fewer and better-shaped patches.

Removing self-overlaps. Texture mapping requires the map to be

free from global-overlaps (as well as local ones, i.e. triangle flips,

which are prevented by our energy functions). We offer no advance-

ment toward the fulfillment of this requirement. Existing fully auto-

matic techniques such as [Smith and Schaefer 2015] prevent global
overlaps from appearing during the optimization, but this requires

a valid, overlap-free map to start from, and the map must be kept

overlap-free during all intermediate phases, which unnecessarily

limits the solution space and hinders interactive UVmap production.

In contrast, in traditional interactive UV authoring suites, global

overlaps are dealt with by the digital artist, for example by manually

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.
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Fig. 9. From left to right: Using our tool, the user can select a maximal
non-overlapping region and move it away, resolving overlaps. Bottom: the
final non-overlapping UVs with a texture.

splitting self-overlapping charts. Our interactive framework can

be employed, just as well, to this end. A difference is that, in our

case, the task of identifying a proper location for the extra cuts can

benefit from the assisted tools of our framework, which favors good

cuts; for example, one can use a tear-up gesture for this purpose

(see Fig. 1 and the accompanying video). Figures 11 and 14–16 show

examples of overlap free UV maps constructed in this way. Many

traditional suites also offer optional single-touch tools which the

user can invoke at any moment to fix current global overlaps, using

some automatic heuristic; the result is rarely immediately usable,

and needs to be manually adjusted; still, this is usually faster than

removing overlaps from scratch. Similar functionalities can be inte-

grated in our framework too. In our prototype, we experimented

with a greedy procedure based on [Sorkine et al. 2002] (see Fig. 11,

right): starting from an arbitrary seed triangle, we visit the mesh

in breadth-first order, avoiding triangles which would oversteps in

UV any already visited triangle (as in [Sorkine et al. 2002], this test

only affects the boundary of the visited region, making it efficient);

when no new triangle can be added, we start with a new seed, and

so on until all triangles are visited.

Cut length vs. number of cuts. By default, we minimize the total

length of the cuts, by weighting the separation measure by edge

length in Eq. (1). This reflects application penalties associated with

cuts, such as texel replication or bleeding artifacts, which can be

considered proportional to the length. Other penalties, like the need

for vertex duplication, are rather associated with the number of cut
edges. We can choose to minimize this number instead of the total

length by giving all edges a weight of 1. This potentially leads to

different results (see Fig. 13).

Fig. 10. Parameterization of an irregular, “video game style” mesh.

[Sorkine et. al 2002] Ours (user assisted) Ours (automatic)

Fig. 11. Comparison with [Sorkine et al. 2002]. Our user-assisted optimiza-
tion (middle column) results in fewer cuts and fewer patches. Right: auto-
matic result obtained with our heuristic to add cuts and remove overlaps.

Fig. 12. UV-mapping of a quad mesh: internally, quad faces are triangulated,
but cuts never split them.

5 LIMITATIONS AND CONCLUDING REMARKS
We proposed an algorithm to address a central challenge of param-

eterization design, that is, the identification of cuts and distortion

minimizing unfolding within a unified minimization process of a

single energy function. This is a stark, qualitative improvement over

previous approaches, where the two problems are solved in cascade

or in alternation. Our framework makes the entire interactive UV-

map creation process faster and more intuitive. We conjecture that a

commercial grade software suite based on our method would further

improve it. We asked professional artists to experiment with our

software, and received positive feedback. Initial experimentation

showed that our approach can speed up the process of manual UV

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.
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Minimize total cut length Minimize number of cut edges

Fig. 13. By default, we minimize the total length of cuts (left), but we can
opt to minimize their number instead (right).

Fig. 14. Left: a texture set (top: tangent-space normal map, bottom: diffuse
map), manually 3D painted over one model UV-mapped with our technique.
Right: two views of the final model.

mapping considerably. While it does require a slight re-adjustment

of the UV-mapping pipeline, the artists expressed interest in using

our method for their future UV-mapping tasks, exploring its limita-

tions and providing us with case studies for future development.

Scalability with mesh resolution. Our system is sufficiently respon-

sive only if the input mesh is within the range of approximately 20k

triangles. Many models employed by the game industry are already

in the acceptable range. Our method can still be used offline, but the

results then might require manual retouches to be finalized. One

future direction for exploration is to reduce the number of degrees

Fig. 15. An example of texture from a high-poly Armadillo model (right)
baked on a low-poly Armadillo model that has been UV mapped with our
technique. Left: resulting textured low-res model.

Fig. 16. A light-texture baked over a model that has been UV mapped
with our technique. The illumination on the renderings on the right comes
exclusively from the texture.

of freedom in the problem. Currently, we treat all edges as candi-

dates for cut placement; this is can be excessive, since the placement

does not always have to be so accurate. Another direction for future

work is adapting acceleration techniques [Kovalsky et al. 2016; Liu

et al. 2017] to our formulation.

Insensitivity to global overlaps. While our framework unifies cut

placement and distortion minimization, two other tasks of UV-

mapping authoring pipelines are left out of it: the removal of global

overlaps and the final packing of charts are simply delegated to

the manual intervention by the designer (assisted by the proposed

interactive tools); in this, our framework offers no direct advance-

ment over current UV authoring practices. A challenging avenue

for future work is to embed the two tasks into the energy to be

minimized, similarly to what we now introduced for cut selection.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.
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Fig. 17. Several results obtained using our system with no assistance (Hand, Elk, Octopus, Moai statue), painting the front facing side to have no cuts (Eight,
Girl) or painting regions that should have cuts (High-Genus Tet). See the accompanying video for more examples.
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APPENDIX A SEPARATION GRADIENT AND HESSIAN
We write the expressions for the gradient and Hessian of the sepa-

ration measure between two corners. Let the two corners be xik1
and xik2 . Then the separation measure (Eq. (3)) between them is

ŝ
(

xik1 − xik2

2) , where ŝ(t) =

t

t + δ
.

The gradient and modified Hessian of s is as follows. Define the

column vector d = 2

(
xik1 − xik2
xik2 − xik1

)
. Then∇ŝ

(

xik1 − xik2

2) = ∂ŝ
∂t d

and the Hessian H is

H = ∇2ŝ
(

xik1 − xik2

2) = ∂2ŝ∂t2 dd⊤+ ∂ŝ∂t ©­­«

+1 0 −1 0

0 +1 0 −1

−1 0 +1 0

0 −1 0 +1

ª®®¬
To ensure that the total Hessian is positive definite, a well known

trick is to project H of each face onto the set of positive semidefi-

nite matrices before summing them up. This requires to compute

one SVD for each face, and can be time consuming; instead, after

[Shtengel et al. 2017], we simply remove the non-convex part in

the expression for ∇2ŝ . The second term in the expression is always

positive semidefinite, while the first term depends on the second

derivative of ŝ , which can be negative; therefore, its elimination

leads to a modified positive semidefinite H :

∇2ŝ
(

xik1 − xik2

2) = ∂ŝ∂t E.

By using this modified Hessian, we observe an increase in the frame

rate, while the effect on convergence is marginal.
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