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Figure 1: Left: Initial mapping of cut mesh. Middle: With increased penalty on seamlessness violation. Right: With increased
penalty on integer violation.
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1 INTRODUCTION
Many applications in computer graphics, such as character model-
ing and animation, architectural geometry, and also physical sim-
ulation to some extent, call for quad meshes as a representation
of the geometry [Bommes et al. 2013b]. However, since triangle
meshes are generally more prevalent, they need to be convert via
the process known as quad remeshing.

Numerous techniques were introduced in recent years, and the
most common approach is to split the problem into cross field
generation, and field guided parameterization. In this document,
we present an interactive, direct parametrization approach, which
nullifies the need for intermediate steps.

The idea behind parameterization based methods in general, is
to map the mesh to the plane, and create a regular grid layout on
it. In order to ensure that the grid on the plane is transformed
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into a valid quad mesh on the surface, certain conditions on the
parameterization must be fulfilled[Bommes et al. 2013a]:

(1) Seamless Condition: The transition function дi j between
two half-edges ei and ej on the parameterization domain
that corresponds to the same surface edge that is part of a
cut seam, has to be an integer-grid automorphism given by:

ej = R
ri j
90◦ei + ®ti j

Where ri j ∈ {0, 1, 2, 3} and ®ti j ∈ Z
2.

(2) Singularity Points Condition: All singular vertices, which
are characterized by a non-zero angular defect on the pa-
rameterization domain, have to lie on integer locations. That
is, given the set Si of all parameterization domain vertices
that correspond to the same singular surface vertex vi , we
require that:

∀u ∈ Si : u ∈ Z2

(3) Consistent Orientation Condition: All triangles on the
parameterization domain should have the same orientation.
That is, we should not allow triangle flips after initial map-
ping is formed.

2 OUR APPROACH
Inspired by [Poranne et al. 2017], we employ a direct approach to
the problem of quadrangulating a triangle mesh, by formulating
and solving a smooth optimization problem. We model smooth
penalty functions for the first two conditions mentioned above
(Seamless and Singularity Points), and add to it an additional penalty,
the Symmetric Dirichlet energy, which prevents triangle flips and
penalize triangle distortion. Since all of our penalty functions are
smooth, we can analytically derive their gradients and hessians,
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and utilize Newton’s method to iteratively solve for a mapping that
renders a valid quad mesh on the 3D surface.

Our smooth approach allows us to visualize the whole optimiza-
tion process for the end-user as an interactive design tool, which
empowers the user to guide the algorithm to the desired result by
gradually changing penalty weights, grid resolution, guiding quads
direction using brush tool, and more. The user receives immediate
feedback for any change applied to the problem settings. Figure
1 illustrates the three main stages of our approach. First, the 3D
surface is cut into the plane. Then, the seamless penalty function
weight gradually increased. Finally, the singular points penalty
function is turned on to place singular vertices at integer locations.

3 DETAILS
3.1 Initialization
We cut the mesh by mapping its dual spanning tree to the parame-
terization plane isometrically as a triangle soup. We first map an
arbitrary initial triangle to the parameterization plane. Then, we
map to the plane all neighbour triangles of the initial triangle, such
that adjacent triangles share an edge. We continue this process for
the next layer of neighbours, till we map all of the mesh’s triangles.

3.2 Seamless Penalty Functions
3.2.1 Angle Penalty. Given two half-edges ei and ej on the param-
eterization domain that corresponds to the same surface edge, we
penalize the angle between them as follows:

Pangle
(
ei , ej

)
= sin

(
4
(
θ (ei ) − θ (ej )

)
−
π

2

)
+ 1

Where θ (ei ) and θ (ej ) are the angles of the two half edges ei and ej ,
respectively. For any k ∈ Z such that θ (ei ) − θ (ej ) =

π
2 k we have

that Pangle
(
ei , ej

)
= 0. Therefore, Pangle will penalize half-edges of

which their angle discrepancy differs from a multiple of 90◦.

3.2.2 Length Penalty. We penalize the length discrepancy between
the two half-edges with the following penalty function:

Plength
(
ei , ej

)
=
(
∥ei ∥

2 −
ej2)2

Only when the two half-edges have the same length, we have that
Plength

(
ei , ej

)
= 0.

3.2.3 Translation Penalty. We penalize for non-integer translation
between the two half-edges as follows:

Ptranslation
(
ei , ej

)
= sin

(
2π

(
xei − xej

)
−
π

2

)
+ 1

+ sin
(
2π

(
yei − yej

)
−
π

2

)
+ 1

Where
(
xei ,yei

)
and

(
xej ,yej

)
are the coordinates of two corre-

sponding vertices of the two half-edges ei and ej .

3.3 Singular-Points Penalty Function
To satisfy the singularity points condition, all vertices on the pa-
rameterization domain which correspond to the same vertex on the
surface, have to lie on integer locations if they are characterized
by a non-zero angle defect in the domain. Therefore, we penalize

singular points as follows:

Psingularity (S) =
∑
u ∈S

(
sin

(
2πxu −

π

2

)
+ 1 + sin

(
2πyu −

π

2

)
+ 1

)
Where S is a set of domain vertices with non-zero angle defect,
which correspond to the same surface vertex, and (xu ,yu ) are the
coordinates of the domain vertex u ∈ S . We weight Psingularity by
the magnitude of the angle defect.

3.4 Consistent Orientation and Distortion
Penalty Function

To satisfy the consistent orientation condition, and to minimize
triangle distortion, we use the symmetric dirichlet energy [Smith
and Schaefer 2015], which prevents triangle flips. The symmetric
dirichlet penalty function is given as follows:

Pdirichlet (ti ) = ∥ J (ti )∥
2
F +

J−1 (ti )2F
Where J (ti ) is the Jacobian of the mapping of triangle ti and ∥·∥F
is the Frobenius norm.

3.5 Optmization Process
In order to find a parameterization which forms a valid quad mesh
on the 3D surface, we solve the following unconstrained optimiza-
tion problem:

min
X

∑
i∼j

Pangle
(
ei , ej

)
+ Plength

(
ei , ej

)
+ Ptranslation

(
ei , ej

)
+
∑
i
Psingularity (Si )

+
∑
i
Pdirichlet (ti )

Where X denotes the set of variables of the optimization problem,
i.e., the coordinates of the vertices in the parameterization domain.
We derive the analytical expressions for the gradient and Hessian
of each penalty function and make sure that all Hessians are pos-
itive semi-definite by zeroing negative eigenvalues. We solve the
optimization problem using Newton’s method. In iteration n, we
evaluate the gradient д(n) and Hessian H (n) of our total objective
function at X (n), and solve the Newton equation H (n)p(n) = −д(n)

which yields a search direction p(n). The next iterate is obtained
by X (n+1) = X (n) + αp(n) where the optimal α is found using line
search. We use Intel’s Pardiso solver to solve the sparse Newton
equation.
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