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Figure 1: Source shape deformed using various algorithms by moving three control points. 

Abstract 
Barycentric coordinates are an established mathematical tool in computer graphics and geometry processing, 
providing a convenient way of interpolating scalar or vector data from the boundary of a planar domain to its 
interior. Many different recipes for barycentric coordinates exist, some offering the convenience of a closed-
form expression, some providing other desirable properties at the expense of longer computation times. For ex-
ample, harmonic coordinates, which are solutions to the Laplace equation, provide a long list of desirable prop-
erties (making them suitable for a wide range of applications), but lack a closed-form expression. 
We derive a new type of barycentric coordinates based on solutions to the biharmonic equation. These coordi-
nates can be considered a natural generalization of harmonic coordinates, with the additional ability to interpo-
late boundary derivative data. We provide an efficient and accurate way to numerically compute the biharmonic 
coordinates and demonstrate their advantages over existing schemes. We show that biharmonic coordinates are 
especially appealing for (but not limited to) 2D shape and image deformation and have clear advantages over 
existing deformation methods. 
Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling (C.2.1, C.2.4, C.3) I.3.7 Animation 

1. Introduction 
Barycentric coordinates have been used extensively in the 
last decade for a wide variety of graphics applications. The 
most common applications are: mesh parameterization, 
rendering, shape deformation and color-and-data interpola-
tion. Originally defined for triangles, barycentric coordi-
nates have evolved and been generalized in many ways to 
perform different tasks. 
In the most basic setup, we are given a planar region 
Ω ⊂ ℝ2 bounded by a polygon (sometimes called a 
“cage”), with 𝑚 vertices 𝑣𝑗 = �𝑥𝑗 ,𝑦𝑗� and edges 𝑒𝑗 =
�𝑣𝑗 ,𝑣𝑗+1�, 𝑗 = 1, … ,𝑚. We use a prime superscript to 
distinguish between an internal point 𝑥 ∈ Ω and a bounda-
ry point 𝑥′ ∈ 𝜕Ω. A set of functions 𝑤𝑗(𝑥) are called bary-
centric coordinates, if for any point 𝑥 ∈ Ω they satisfy the 
following two properties: 

identity reproduction: 

�𝑤𝑗(𝑥)𝑣𝑗 = 𝑥
𝑚

𝑗=1

 (1) 

partition of unity: 

�𝑤𝑗(𝑥) = 1
𝑚

𝑗=1

 (2) 

Interpolating or approximating a set of values 𝑓𝑗 given at 
the vertices 𝑣𝑗, is achieved by linearly blending the coordi-
nate functions with the given data at the polygon vertices 
as coefficients: 

𝑓(𝑥) = �𝑤𝑗(𝑥)𝑓𝑗

𝑚

𝑗=1

 (3) 

(1) and (2) are sometimes referred to as “linear precision” 
and “constant precision” respectfully. Combined together 
they imply that the interpolant 𝑓(𝑥) reproduces affine 
functions from their boundary values. 

Beside (1) and (2), the coordinates are often required to 
satisfy some additional desirable properties such as 
smoothness, positivity, Lagrange (the ability to exactly 
interpolate the user data), etc. Thus, the choice of the most 
suitable set of coordinates is application-dependent. 

Over the years, the basic concept of barycentric coordi-
nates has been extended in many different ways. Some 
extensions allow the coordinate functions 𝑤𝑗 to be com-
plex-valued functions [WBCG09], while others allow the 
polygon to be an arbitrary smooth curve [Bel06] or even a 
3D surface [FKR05, LLCO08]. The barycentric coordi-
nates that we will describe here belong to a family of coor-
dinates that supports higher order interpolation. i.e., not 
only do they possess the ability to exactly interpolate 
boundary data, but they also interpolate derivative infor-
mation given along the boundary. 
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For this to be realized, (3) must be modified to take the 
following form: 

𝑓(𝑥) = �𝛼𝑗(𝑥)𝑓𝑗 + 𝛽𝑗(𝑥)𝑑𝑗

𝑚

𝑗=1

 (4) 

namely, the single set of functions 𝑤𝑗(𝑥) is replaced with 
two distinct sets of functions 𝛼𝑗(𝑥) and 𝛽𝑗(𝑥). 𝑓𝑗 are the 
prescribed values at the polygon vertices as before, and 𝑑𝑗 
are the prescribed normal derivatives along the edges of 
the polygon. More precisely, 𝑑 = 𝜕𝑓/𝜕𝑛 = ∇𝑓 ∙ 𝑛 where 𝑛 
is the unit normal to the boundary. The function 𝑓 is as-
sumed to vary linearly on the edges and the normal deriva-
tive to be constant on each edge. 

Property (1) is reformulated as: 

�𝛼𝑗(𝑥)𝑣𝑗 + 𝛽𝑗(𝑥)𝑛𝑗

𝑚

𝑗=1

= 𝑥 (5) 

where 𝑛𝑗 is the unit normal to the 𝑗th edge, and property 
(2) reformulated as: 

�𝛼𝑗(𝑥)
𝑚

𝑗=1

= 1 (6) 

The second term in (5) is the natural extension to (1) 
since the normal derivatives of the identity map are exactly 
the unit normals. Note that the 𝛽𝑗 do not appear in (6) since 
the derivatives of a constant function are zero. It is im-
portant to emphasize that 𝛼𝑗 on their own are not barycen-
tric coordinates, as they do not satisfy (1). 

Finally, for 𝑓(𝑥) to actually interpolate the boundary 
values and derivatives, the Lagrange property must be 
replaced by the analogous Hermite property: 
𝛼𝑗(𝑣𝑖) = 𝛿𝑖𝑗 𝛽𝑗(𝑥′) = 0,  𝑥′ ∈ 𝜕Ω
𝜕𝛼𝑗
𝜕𝑛

(𝑥′) = 0, 𝑥′ ∈ 𝜕Ω
𝜕𝛽𝑗
𝜕𝑛

(𝑥′) = 𝛿𝑖𝑗 ,  𝑥′ ∈ 𝑒𝑖
 (7) 

In this paper, we show how to construct a set of barycen-
tric coordinates that satisfy (5)-(7). Additionally, they re-
spect the shape of the object, decaying proportionally to 
the inner distance in a smooth manner. Such coordinates 
can be constructed by solving the biharmonic Dirichlet 
problem: 

∆2𝑓(𝑥) = 0, 𝑥 ∈ Ω

𝑓(𝑥′) = 𝑔1(𝑥′), 𝑥′ ∈ 𝜕Ω
𝜕𝑓
𝜕𝑛

(𝑥′) = 𝑔2(𝑥′), 𝑥′ ∈ 𝜕Ω
 (8) 

where ∆ is the Laplace operator and 𝑔1,𝑔2 are the pre-
scribed boundary conditions. The biharmonic Dirichlet 
problem admits a unique solution under very mild condi-
tions. This solution 𝑓 minimizes the so-called Hessian 
energy and has a harmonic Laplacian at all points of Ω. As 
a consequence, these coordinates are smooth – 𝐶∞ away 
from the boundary. 

Since any harmonic function is also biharmonic, bi-
harmonic functions are a natural extension to harmonic 
functions. Yet this extra power (compared to harmonic) 
can be a mixed blessing if care is not taken, as biharmonic 
functions do not (in general) satisfy the maximum princi-
ple and as a fourth order PDE, (8) is more prone to oscilla-
tions. Nevertheless, by incorporating a semi-automatic 
control mechanism over the boundary behavior we can 
design simple and intuitive tools to obtain results dramati-
cally better than the relevant alternatives. 

2. Previous Work 

2.1 Barycentric Coordinates 
There are many different constructions of barycentric co-
ordinates for planar polygons. Wachspress [Wac75] was 
the first to define barycentric coordinates for convex poly-
gons and apply them to finite elements analysis. Pinkall 
and Polthier [PP93] derived the so-called discrete harmon-
ic coordinates (also called “cotangent weights”) based on a 
finite-element discretization of the Dirichlet energy. For 
non-convex polygons, these classic constructions result in 
discontinuous coordinates which makes them unusable. 

Mean-value coordinates [Flo03] were proposed as an al-
ternative to discrete harmonic since they are guaranteed to 
be positive in the kernel of a star-shaped polygon. They 
were further generalized [HF06] for arbitrary non-convex 
polygons, although the positivity property is not main-
tained. Figure 2 demonstrates the undesirable effect of 
negative coordinate values when mean-value coordinates 
are used to perform planar image deformation. In fact 
(contrary to what their name seems to imply), mean-value 
coordinates do not satisfy the classical mean-value proper-
ty. 

While all the coordinates mentioned above possess sim-
ple closed-form expressions, the need for barycentric coor-
dinates with more tailored properties triggered further 
research. Lipman et al. [LKCOL07] modified the construc-
tion of mean-value coordinates to force them to be positive 
for non-convex polygons at the price of longer numerical 
evaluation. However, these coordinates are not smooth. 

Joshi et al. [JMD*07] proposed harmonic coordinates, 
defined as solutions of the Laplace equation over the do-
main. Being harmonic functions, the coordinates obey the 
minimum/maximum principle and since the boundary val-
ues are forced to be in the range [0,1], the coordinates are 
guaranteed to be positive even in highly concave regions, 
without sacrificing smoothness (they are 𝐶∞ inside the 
domain). 

On the down side, harmonic coordinates do not possess 
an analytic formula even for fairly simple polygons. 
[JMD*07] suggested using a multigrid solver to accelerate 
their computation. [Rus08, BCWG09] used the boundary 
elements method (BEM) [BD89] to construct harmonic 
coordinates in 3D. Recently, Weber and Gotsman [WG10] 
showed how to accurately and efficiently compute 2D 
harmonic coordinates based on a second-order discontinu-
ous discretization of the celebrated Cauchy integral formu-
la from complex analysis.  

Hormann and Sukumar [HF08] proposed the maximum 
entropy coordinates (MEC) as a possible alternative to 
harmonic coordinates. MEC are also smooth, positive and 
interpolating and can be computed by solving a convex 
optimization problem. The important question of the exist-
ence of barycentric coordinates (for non-convex polygons), 
which are positive, interpolating, smooth and have a closed 
form, remains open. 

Lipman et al. [LLCO08] proposed Green Coordinates - 
an extension to barycentric coordinates especially suitable 
for shape deformation. The deformation is represented as a 
linear combination of two sets of barycentric coordinates: 
one for the polygon’s vertices and the other for its normals. 
This construction is quite similar in spirit to ours, as we 
will see in Section  4. In fact, (4) has exactly the same form 
as that used in [LLCO08], although the Green coordinates 
do not satisfy (7). 



 
 

Weber et al. [WBCG09] introduced the concept of com-
plex barycentric coordinates by allowing the barycentric 
coordinates to be complex-valued functions. They pro-
posed several recipes for such complex coordinates, the 
most fundamental one being the Cauchy coordinates 
(which is shown to be equivalent to Lipman et al.’s Green 
coordinates in 2D). In [WBCG09], the coordinate func-
tions are designed to be holomorphic; thus, their linear 
combinations (with complex coefficients) are also holo-
morphic, implying that the 2D mappings they produce 
have the potential of being conformal maps. Even though it 
is meaningless to talk about positivity of complex num-
bers, it is quite remarkable that Cauchy coordinates (which 
possess a closed-form expression) are well behaved even 
in highly concave regions. Unfortunately, their simple and 
efficient computation comes at the price of being able to 
only approximate the boundary values.  

In follow-up work, Weber and Gotsman [WG10] demon-
strated that Cauchy/Green coordinates do not always pro-
duce conformal maps, since a complex holomorphic func-
tion will be conformal only if its first complex derivative 
does not vanish. They proposed Hilbert coordinates and 
showed how to use them in order to construct maps from 
the complex plane to itself which are guaranteed to be 
conformal. Their deformation algorithm allows the user to 
prescribe rotations along the boundary and exactly interpo-
late them, but no direct control over position is given. 

Recently, it was shown in [WBCG*11] that complex 
barycentric coordinates may be used also to generate use-
ful non-holomorphic complex maps in the plane. A general 
construction for complex barycentric coordinates was giv-
en, along with a closed-form recipe for (non-holomorphic) 
complex coordinates which interpolate the boundary val-
ues (MAGIC coordinates). 

2.2 Hermite Interpolation 
Biharmonic coordinates are not the first to address the 
problem of interpolating derivative boundary values (the 
so-called “Hermite setting”). Dyken and Floater [DF09] 
extended mean-value coordinates to the Hermite setting. 
However, those coordinates suffer from the same artifacts 
that regular mean-value coordinates do, namely, they per-
form poorly on non-convex shapes (see Figure 2). Fur-
thermore, as opposed to regular mean-value, they do not 
possess a closed-form expression and numerical integra-
tion is required. 

Manson and Schaefer [MS10] showed how to construct a 
family of barycentric coordinates based on moving least 
squares (MLS) fitting of polynomials (of arbitrary degree) 
and extended them to also support derivative interpolation. 
Unfortunately, like mean-value, they do not handle con-
cave regions properly and suffer from the same “leakage” 
artifact across boundary edges. Both [DF09] and [MS10] 
do not provide a proof that their constructions actually 
satisfy the derivative constraints (although numerical ex-
periments seem to imply that this is indeed the case). 

A related concept, but one that does not entirely conform 
to the Hermite setting, was described by Langer and Seidel 
[LS08]. They gave a general recipe to convert any existing 
barycentric coordinates to higher-order ones. This provides 
the ability to interpolate boundary values as well as deriva-
tives, but only at the vertices of the cage. Control over the 
rest of the boundary (i.e. edges in 2D and faces in 3D) is 
impossible. 

2.3 Variational Methods 
Barycentric coordinates lie at the heart of many defor-
mation methods due to their smoothness, simplicity and 
the ability to compute them at a preprocessing step. They 
can be used, directly [JMD*07, WBCG09, LLCO08] or 
indirectly, to create a meaningful low-dimensional sub-
space of deformations from which an “optimal” defor-
mation may be selected by solving a variational (i.e. opti-
mization) problem [BCWG09, MKB*08, WG10].  

Most modern deformation techniques are based on the 
variational approach, in which an energy functional is 
minimized subject to a set of user-defined constraints. 
Popular choices for energies are the Dirichlet (harmonic) 
energy [ZRK*05, JMD*07], which minimizes the magni-
tude of the Jacobian of the deformation map, the conformal 
energy (As-Similar-As-Possible - ASAP), which penalizes 
the deviation of the Jacobian matrix from being a similari-
ty transformation (composition of rotation with a uniform 
scale) [IMH05, WBCG09], and As-Rigid-As-Possible 
(ARAP), which minimizes the distance of the Jacobian 
from the closest rotation [IMH05, BCWG09].  

 

Figure 2: Deformation of the "Pants" shape (top-left). 
Cauchy coordinates produce angle-preserving defor-
mation but miss the boundary. Negative values of the 
mean-value coordinates cause a repelling artifact be-
tween the “legs”. Harmonic coordinates overcome this 
problem, but result in shear on the boundary. Hermite 
mean-value provides the ability to specify boundary de-
rivatives but result in severe artifacts due to the concavity 
of the shape.  Biharmonic coordinates generate a good 
compromise with full control over boundary behavior. 

The VHM method [BCWG09] is a variant of the ARAP 
method, and closely related to our deformation algorithm. 
VHM operates in the subspace of harmonic maps, parame-
terized by two functions defined on the boundary of the 
domain. In addition, the Jacobian of the deformation at a 
small set of points (so-called anchors) located along the 
skeleton of the shape is required to be close to rotations. 
Finally, a regularization term is added to compensate for 
the fact that rigidity is forced only at small portion of the 
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shape (the anchors). As we will see, our deformation algo-
rithm has two clear advantages over VHM. First, it does 
not require knowledge of the skeleton of the shape. Se-
cond, it does not rely on a user knob to control the balance 
between smoothness and rigidity. 

Botsch and Kobbelt [BK04] presented an interactive 
shape deformation framework which in contrast to our 
space deformation method operates on manifolds. The user 
assigns manipulators to different parts of the shape and 
applies affine transformations to them. The transfor-
mations are propagated to the rest of the shape by recur-
sively solving the Laplace equation. Higher order Laplaci-
ans allow smoother transition between constrained and 
unconstrained regions and in particular, a second order 
Laplacian results in a 𝐶1continuous biharmonic function. 
Andrews et al. [AJC11] also solved high order harmonic 
systems in their surface modeling technique. This allowed 
them to explicitly control Dirichlet and Neumann bounda-
ry conditions simultaneously. 

Recently, Jacobson et al. [JBPS11] presented a method 
for computing weight functions (not quite barycentric co-
ordinates), specifically designed for shape deformation. 
Their main observation is that in order to achieve appeal-
ing results, the weights should be positive and at least 𝐶1 
at the control handles. The weights are computed by solv-
ing a (convex) constrained optimization problem using the 
finite element method (essentially decomposing the region 
of interest in space into tetrahedral elements). The energy 
is the Hessian energy with natural boundary conditions 
(i.e. normal derivative is zero) whose minimizer without 
positivity constraints is a biharmonic function. Figure 3 
compares between these Bounded Biharmonic Weights 
(BBW) and our  𝛼𝑗(𝑥) coordinate. We observed that in the 
majority of cases, 𝛼𝑗(𝑥) tend to be positive even without 
explicitly constraining it. It is important to note that in 
general, BBW satisfy Eq. (2) but not (1). In order to 
achieve identity reproduction, the weights are linearly 
blended with transformations rather than with positions. 
However, without the complementary 𝛽𝑗(𝑥) coordinate, it 
is impossible to achieve explicit control over boundary 
derivatives. 
3. Contributions  
We formulate three different deformation methods, all 
based on our new biharmonic coordinates. Each method 
has a different user interface and provides different ad-
vantages. The most sophisticated one (Section  5.4) is a 
competitive alternative to ARAP, which allows the Jacobi-
an near the boundary to be an orthogonal matrix (as op-
posed to orthonormal), eliminating shearing artifacts while 
preserving the “thickness” of the object (see Figure 1 for a 
sneak peek). 
The main contributions of this paper are: 
1) Proposal of biharmonic coordinates as a general math-

ematical tool for data interpolation. 
2) Description of an efficient and accurate algorithm for 

the computation of biharmonic coordinates (closed-
form expressions for the BEM basis functions used in 
the computation are also provided). 

3) Introduction of a deformation algorithm based on the 
novel concept of shape “thickness”. 

4. Biharmonic Functions 
In this section, we derive the biharmonic coordinates as 
solutions to the biharmonic Dirichlet problem and describe 
a numerical procedure to compute these coordinates based 

on the direct Boundary Elements Method (BEM) approach 
[BD89]. 

4.1 The Boundary Integrals 
Fuglede [Fug81] provide a boundary integral equation for 
the biharmonic Dirichlet problem. For completeness, we 
provide here a slightly different, more detailed derivation 
for the same equation, as we have found it to be more re-
vealing. Our starting point is Green’s second identity: 

�𝜉∆𝜂 − 𝜂∆𝜉𝑑𝐴
Ω

= �𝜉
𝜕𝜂
𝜕𝑛 − 𝜂

𝜕𝜉
𝜕𝑛 𝑑𝑠

∂Ω

 (9) 

where 𝜂 and 𝜉 are any twice-differentiable functions in 
Ω ⊂ ℝ2, ∆ is the Laplace operator, the integral on the left 
is over the area of Ω and the integral on the right is over 
the boundary 𝜕Ω. Now denote by 𝐺𝐻 and 𝐺𝐵𝐻 the funda-
mental solutions of the 2D harmonic and biharmonic equa-
tion respectively: 

𝐺𝐻(𝑥, 𝑥′) = −
1

2𝜋 ln‖𝑥 − 𝑥′‖

𝐺𝐵𝐻(𝑥, 𝑥′) = −
‖𝑥 − 𝑥′‖2

8𝜋
(ln‖𝑥 − 𝑥′‖ − 1)

 

and by 𝑓 a biharmonic function. Plugging 𝜉 = ∆𝑓 and 
𝜂 = 𝐺𝐵𝐻 into (9) leads to: 

�∆𝑓∆𝐺𝐵𝐻 − 𝐺𝐵𝐻∆2𝑓𝑑𝐴
Ω

= �∆𝑓
𝜕𝐺𝐵𝐻

𝜕𝑛 − 𝐺𝐵𝐻
𝜕∆𝑓
𝜕𝑛 𝑑𝑠

∂Ω

 
(10) 

In contrast to [Fug81], we use a slightly different function 
for 𝐺𝐵𝐻 that has the property ∆𝐺𝐵𝐻 = 𝐺𝐻. Since ∆2𝑓 = 0, 
we have: 

�∆𝑓𝐺𝐻𝑑𝐴
Ω

= �∆𝑓
𝜕𝐺𝐵𝐻

𝜕𝑛 − 𝐺𝐵𝐻
𝜕∆𝑓
𝜕𝑛 𝑑𝑠

∂Ω

 (11) 

Returning to (9), but this time plugging in 𝜉 = 𝑓 and 
𝜂 = 𝐺𝐻 and rearranging the terms results in: 

𝑓 = �∆𝑓𝐺𝐻𝑑𝐴
Ω

+ �𝑓
𝜕𝐺𝐻

𝜕𝑛 − 𝐺𝐻
𝜕𝑓
𝜕𝑛 𝑑𝑠

∂Ω

 (12) 

which is Green’s third identity. Finally, combining (11) 
and (12) leads to the boundary integral identity for the 
biharmonic function f: 

𝑓(𝑥) = �  𝑓(𝑥′)
𝜕𝐺𝐻

𝜕𝑛 − 𝐺𝐻
𝜕𝑓(𝑥′)
𝜕𝑛 𝑑𝑠

∂Ω

 

          + �∆𝑓(𝑥′)
𝜕𝐺𝐵𝐻

𝜕𝑛 − 𝐺𝐵𝐻
𝜕∆𝑓(𝑥′)
𝜕𝑛 𝑑𝑠

∂Ω

 
(13) 

Eq. (13) implies that we can evaluate a biharmonic func-
tion 𝑓 at any point 𝑥 ∈ Ω if we know the values of 𝑓, 
𝜕𝑓/𝜕𝑛, ∆𝑓, 𝜕∆𝑓/𝜕𝑛 on the boundary. Moreover, given 
any such values on the entire boundary, the integral in (13) 
will produce a biharmonic function in Ω. However, this 
function will not have the specified boundary values, un-
less they were taken from a biharmonic function in the first 
place. In particular, since ∆𝑓 is a harmonic function, it is 
uniquely defined by 𝜕∆𝑓/𝜕𝑛 along the boundary. Substi-
tuting ∆𝑓 instead of 𝑓 in (12) leads to the following extra 
condition that ∆𝑓 must satisfy: 

∆𝑓(𝑥) = �  ∆𝑓(𝑥′)
𝜕𝐺𝐻

𝜕𝑛 − 𝐺𝐻
𝜕∆𝑓(𝑥′)
𝜕𝑛  𝑑𝑠

∂Ω

 (14) 



 
 

4.2 Boundary Discretization 
The main idea of BEM is to represent the function we are 
solving for as a boundary integral, then discretize this 
boundary (as opposed to Finite Element Methods which 
discretize the entire domain) and derive the solution by 
solving a linear system of equations. Although the ob-
tained solution only approximates the true solution (with 
high fidelity), it is a 𝐶∞ biharmonic function expressed in 
a closed form. 

Since our domain is polygonal, we can convert the 
boundary integrals (13) and (14) to a sum over the m poly-
gon edges 𝑒𝑗 , 𝑗 = 1, … ,𝑚: 

𝑓(𝑥) = ��𝑓
𝜕𝐺𝐻

𝜕𝑛 𝑑𝑠
𝑒𝑗

𝑚

𝑗=1

−� �
𝜕𝑓
𝜕𝑛 𝐺

𝐻𝑑𝑠
𝑒𝑗

𝑚

𝑗=1

+ ��∆𝑓
𝜕𝐺𝐵𝐻

𝜕𝑛 𝑑𝑠
𝑒𝑗

𝑚

𝑗=1

−� �
𝜕∆𝑓
𝜕𝑛 𝐺𝐵𝐻𝑑𝑠

𝑒𝑗

𝑚

𝑗=1

 

 

∆𝑓(𝑥) = ��∆𝑓
𝜕𝐺𝐻

𝜕𝑛
𝑒𝑗

𝑚

𝑗=1

𝑑𝑠 −� �
𝜕∆𝑓
𝜕𝑛 𝐺𝐻𝑑𝑠

𝑒𝑗

𝑚

𝑗=1

 

We are interested in a particular biharmonic function that 
has continuous piecewise-linear values on the polygon 
edges and piecewise-constant normal derivatives. Unfortu-
nately, the Laplacian ∆𝑓 and its normal derivative 𝜕∆𝑓/𝜕𝑛 
can be quite complicated functions. Nevertheless, in order 
to solve the boundary integral equation, we will assume 
that ∆𝑓 can be faithfully approximated by a piecewise-
linear function and 𝜕∆𝑓/𝜕𝑛 by a piecewise-constant func-
tion on 𝜕Ω. Note that in the special case that 𝑓 is an affine 
function, these assumptions are accurate and 𝑓 will be 
reproduced exactly, and since affine precision implies 
linear and constant precision, the advantage of using this 
particular construction is now clear. Namely, that equa-
tions (5) and (6) are satisfied exactly. 

Since 𝜕∆𝑓/𝜕𝑛 and 𝜕𝑓 𝜕𝑛⁄  are constant on each edge, 
they may be factored out of the integral sign. Expressing 𝑓 
and ∆𝑓 on each edge 𝑒𝑗 as a linear function of the values 
𝑓𝑗 , 𝑓𝑗+1 and ∆𝑓𝑗 ,∆𝑓𝑗+1 at the endpoints, and evaluating the 
integrals, leads to: 

𝑓(𝑥) = �𝜙𝑗𝐻(𝑥)𝑓𝑗 + 𝜓𝐻(𝑥)𝑑𝑗

𝑚

𝑗=1

 

+ 𝜙𝑗𝐵𝐻(𝑥)𝑙𝑗 + 𝜓𝑗𝐵𝐻(𝑥)𝑘𝑗 
 

(15) 

∆𝑓(𝑥) = �𝜙𝑗𝐻(𝑥)𝑙𝑗 + 𝜓𝑗𝐻(𝑥)𝑘𝑗

𝑚

𝑗=1

 (16) 

where 𝑓𝑗 = 𝑓�𝑣𝑗�, 𝑙𝑗 = ∆𝑓�𝑣𝑗� and 𝑑𝑗 = 𝜕𝑓(𝑥′) 𝜕𝑛⁄ , 
𝑘𝑗 = 𝜕∆𝑓(𝑥′)/𝜕𝑛 for 𝑥′ ∈ 𝑒𝑗. 𝜙𝑗𝐻, 𝜓𝑗𝐻,  𝜙𝑗𝐵𝐻, 𝜓𝑗𝐵𝐻 are the 
basis functions obtained from computing the integrals. 
Fortunately, these integrals may be solved analytically, and 
the exact expressions are given in Appendix A. To the best 
of our knowledge, the solution of the above integrals has 
not appeared in the literature before. 

4.3 Biharmonic Coordinates 
We now have all the necessary building blocks for setting 
up the linear system. Eqs. (15) and (16) are valid for any 
point 𝑥 ∈ Ω, and although the basis functions 𝜙𝑗𝐻, 𝜓𝑗𝐻, 

 𝜙𝑗𝐵𝐻, 𝜓𝑗𝐵𝐻  are singular on the boundary, their limits when 
𝑥 approaches 𝑥′ ∈ 𝜕Ω exist. 

Evaluating (16) at the vertices 𝑣𝑖 results in 𝑚 linear 
equations: 

𝑙𝑖 = �𝜙𝑗𝐻(𝑣𝑖)𝑙𝑗 + 𝜓𝑗𝐻(𝑣𝑖)𝑘𝑗

𝑚

𝑗=1

, 𝑖 = 1 …𝑚 (17) 

which has the matrix form: 𝑙 = Φ𝐻𝑙 + Ψ𝐻𝑘, where 𝑙 and 𝑘 
are 𝑚 × 1 column vectors and Φ𝐻 and Ψ𝐻 are 𝑚 × 𝑚 
matrices. Rearranging the equation and inverting Ψ𝐻 leads 
to the following linear relation 𝑘 = 𝐴𝑙, where 

𝐴 = (Ψ𝐻)−1(𝐼 − Φ𝐻) 
Following the same path, we evaluate (15) at the vertices, 
obtaining the following system of equations: 

𝑓 = Φ𝐻𝑓 + Ψ𝐻𝑑 + Φ𝐵𝐻𝑙 + Ψ𝐵𝐻𝑘 (18) 

Plugging in the expression for 𝑘, combining similar terms 
and inverting another matrix, we can express 𝑙 as 

𝑙 = 𝐵𝑓 + 𝐶𝑑, where 
𝐵 = 𝐷(𝐼 − Φ𝐻) 
𝐶 = −𝐷Ψ𝐻 
𝐷 = (Φ𝐵𝐻 + Ψ𝐵𝐻𝐴)−1 

Denoting by 𝜙𝑗𝐻(𝑥), 𝜓𝑗𝐻(𝑥),  𝜙𝑗𝐵𝐻(𝑥), 𝜓𝑗𝐵𝐻(𝑥) the 1 × 𝑚 
row vectors obtained by evaluating the appropriate basis 
functions at a given fixed 𝑥, we obtain the matrix form of 
Eq. (13): 

𝑓(𝑥) = 𝜙𝐻(𝑥)𝑓 + 𝜓𝐻(𝑥)𝑑 + 𝜙𝐵𝐻(𝑥)𝑙 + 𝜓𝐵𝐻(𝑥)𝑘
 Plugging in the expressions derived above for 𝑙 and 𝑘: 

𝑓(𝑥) = 𝜙𝐻(𝑥)𝑓 + 𝜓𝐻(𝑥)𝑑
+ (𝜙𝐵𝐻(𝑥) + 𝜓𝐵𝐻(𝑥)𝐴)(𝐵𝑓 + 𝐶𝑑) 

Finally, we are able to express the biharmonic function 
𝑓(𝑥) using the following linear combination: 

𝑓(𝑥) = 𝛼(𝑥)𝑓 + 𝛽(𝑥)𝑑 
where 

𝛼(𝑥) = 𝜙𝐻(𝑥) + 𝜁(𝑥)𝐵 
𝛽(𝑥) = 𝜓𝐻(𝑥) + 𝜁(𝑥)𝐶 
𝜁(𝑥) = 𝜙𝐵𝐻(𝑥) + 𝜓𝐵𝐻(𝑥)𝐴 

(19) 

and conclude that the vectors 𝛼(𝑥) and 𝛽(𝑥) are the bi-
harmonic coordinates of 𝑥. A color visualization of the 
coordinate functions for a sample vertex and edge of a 
simple polygon is given in Figure 3. 

To summarize: the algorithm for computing the bi-
harmonic coordinates boils down to evaluating the four 
𝑚 × 𝑚 matrices Φ𝐻, Ψ𝐻, Φ𝐵𝐻, Ψ𝐵𝐻 based on the expres-
sions given in Appendix A and using them to compute the 
three matrices 𝐴,𝐵,𝐶. The latter involves two matrix in-
versions and several matrix multiplications and additions. 
Once this is done (typically in a preprocessing stage), Eq. 
(19) is used to compute the biharmonic coordinates at as 
many points 𝑥 ∈ Ω as needed. 

Finally, we mention that it is possible to improve the ac-
curacy of the results by subsampling the polygon along the 
edges in two ways. First, (15) and (16) can be evaluated at 
the subsamples, resulting in additional equations for the 
systems (17) and (18). Since this system will be over-
constrained, the matrix inversion used for computing 𝐴 and 
𝐵 is replaced by a pseudo-inverse. This typically leads to 
smoother results near the boundary. The second way to 
improve accuracy is by adding “virtual” vertices at the 
subsamples, which will result in a larger, but still square 



 
 

system. The prescribed boundary values of the new verti-
ces are simply linearly interpolated from those of the orig-
inal vertices, making the refinement process transparent to 
the user. 

 
Figure 3: Visualization of various coordinate schemes for 
the vertex / edge marked in green. Top-down – mean-
value contains undesirable negative values. Bounded 
biharmonic weight [JBPS11] are forced to be positive. 
Harmonic coordinates are positive as well due to the min / 
max principle. Our biharmonic 𝛼 is positive for that par-
ticular vertex, which explains its similarity to [JBPS11]. 
Note the unintuitive local maximum on the left hand side 
of Hermite mean-value 𝛼. Hermite mean-value 𝛽 becomes 
negative. 
5. Shape Deformation 
Although biharmonic coordinates are general enough to be 
applied to any kind of scalar or vector data interpolation, 
from now on we focus exclusively on the application of 
planar shape deformation.  

A simple setup of a deformation algorithm based on bar-
ycentric coordinates is obtained by treating the boundary 
values as vectors in ℝ2, allowing the user to interact with 
the system by dragging the vertices 𝑣𝑗 of the cage Ω to 
some new positions 𝑓𝑗. In response, Eq. (3) or (4) is in-
voked, mapping each point 𝑥 ∈ Ω to a new position 𝑓(𝑥). 
The mathematical properties of the map 𝑓:ℝ2 → ℝ2 and 
the quality of the deformation are then derived from the 
properties of the coordinates. In particular, the Jacobian of 

the map, which depends linearly on the derivatives of the 
coordinates, characterizes the local behavior of the defor-
mation. 

In contrast to traditional barycentric coordinates, which 
allow only the prescription of boundary values, biharmonic 
coordinates provide the freedom to prescribe both bounda-
ry values and normal derivatives. Specifically, biharmonic 
coordinates allow to prescribe the complete 2 × 2 (piece-
wise constant) Jacobian matrix on the boundary. To see 
this, denote the  𝑗th 2 × 1 edge vector as 𝑒𝑗 = �𝑣𝑗+1 − 𝑣𝑗� 
and the edge unit normal as 𝑛𝑗 = �𝑒𝑗�

⊥ �𝑒𝑗�� . The action 
of the Jacobian matrix 𝐽 of 𝑓 on an edge vector is given by 
𝐽𝑒𝑗 = 𝑓𝑗+1 − 𝑓𝑗. Similarly, the action of 𝐽 on the normal is 
𝐽𝑛𝑗 = 𝑑𝑗. Hence, since 𝑒𝑗 and 𝑛𝑗 are fixed, specifying 𝑓𝑗 
and 𝑑𝑗 uniquely determine 𝐽. 

Figure 4 shows a variety of maps from the square to it-
self, obtained by keeping the boundary fixed while manu-
ally changing the normal derivative vector direction and 
magnitude. While this example demonstrates the flexibility 
and expressiveness of biharmonic coordinates, in some 
scenarios a user may want to prescribe only boundary posi-
tions, and avoid dealing with boundary derivatives all to-
gether. Moreover, as evident in Figure 4 bottom right, a 
careless specification of boundary derivatives may lead to 
unnatural results. To alleviate this, we now provide several 
methods for automatically deducing boundary derivatives 
from boundary positions alone. Which method to choose 
depends on the effect that the user wants to achieve, thus 
application-dependent. 

5.1 Orthogonal Boundary Jacobians 
A natural choice in many scenarios is to set the normal 
derivative vector to be perpendicular to the target edge. 
The corresponding Jacobians on the boundary are orthogo-
nal but not necessarily orthonormal. Denote the unit nor-
mal to the 𝑗th edge of the target cage as 
𝑛�𝑗 = �𝑓𝑗+1 − 𝑓𝑗�

⊥ �𝑓𝑗+1 − 𝑓𝑗��   and consider the case 
where 𝑑𝑗 = 𝑠𝑗𝑛�𝑗   for some real scalar 𝑠𝑗. The question that 
remains is then, what value should we assign to 𝑠𝑗? As a 

 
Figure 4: A square (top-left) is mapped to itself in various 
ways using biharmonic coordinates, varying only the 
normal derivatives. Forcing the derivative to be too large 
(bottom-right) leads to self-overlap. 
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first obvious choice we set 𝑠𝑗 = 1 so that 𝑑𝑗 has unit 
length. This means that the deformation will not contain 
stretch in the normal direction. Figure 5 compares between 
bending a bar using harmonic coordinates and using bi-
harmonic coordinates with orthogonal boundary Jacobians 
with fixed 𝑠𝑗 = 1. 

 
Figure 5: Bending of a bar by specifying a circular 
boundary. On the left, harmonic coordinates results in 
shear. In addition, the center line (red) is unnaturally 
shifted away from the center of rotation. On the right, 
biharmonic coordinates with orthogonal boundary Jaco-
bians (Section  5.1) maintains the center line exactly in the 
middle, keeping the anisotropic scale aligned to the 
boundary. 

5.2 Complex Barycentric Coordinates 
An alternative choice is to restrict the Jacobians on the 
boundary to be similarity matrices. This can be achieved 
by setting 𝑠𝑗 = �𝑓𝑗+1 − 𝑓𝑗�/‖𝑒𝑗‖. The deformation will 
tend to preserve angles between any two intersecting 
curves in the vicinity of the boundary with the added value 
of interpolating the boundary (with possibly more shear in 
the interior). 

Recall an elementary fact from complex analysis; a 90 
degree rotation can be expressed by multiplication with the 
complex number 𝑖. Let us interpret the vectors 𝑑𝑗 and 𝑓𝑗 as 
complex numbers and impose 𝑑𝑗 = 𝑖 �𝑓𝑗+1 − 𝑓𝑗� �𝑒𝑗�� . 
Rearranging the terms in Eq. (4), we can express the map-
ping formula in complex form: 

𝑓(𝑧) = �𝐶𝑗(𝑧)𝑓𝑗

𝑚

𝑗=1

 

𝐶𝑗(𝑧) = 𝛼𝑗(𝑧) + 𝑖 �
𝛽𝑗−1(𝑧)
�𝑒𝑗−1�

� −
𝛽𝑗(𝑧)
�𝑒𝑗�

 

where 𝐶𝑗(𝑧) are complex barycentric coordinates 
[WBCG09]. Since the real part 𝛼𝑗(𝑧) is not harmonic, 
obviously these complex coordinates are not holomorphic. 
While Weber et al. [WBCG*11] showed how to construct 
non-holomorphic complex coordinates that have the La-

grange property, our coordinates are the first complex 
barycentric coordinates that have the Hermite property. 
Figure 6 demonstrates this effect and compares our result 
to Cauchy coordinates which preserve angles everywhere 
but only approximate the cage target position. 

5.3  As-Harmonic-As-Possible Deformation 
In more complicated scenarios, when the source and target 
cages are significantly different, a more sophisticated way 
to choose 𝑠𝑗 is required. Since we consider harmonic coor-
dinates to be the preferred choice for deformation among 
all real coordinate recipes, the closest to this is what we 
call the As-Harmonic-As-Possible (AHAP) map that still 
satisfies the user constraints. 

 
Figure 6: Deformation of the star: Cauchy coordinates 
produces a conformal map, but the boundary is not inter-
polated. Using complex biharmonic coordinates (Sec-
tion  5.2) we are able to interpolate the boundary while 
maintaining conformality at the vicinity of the boundary. 

We define the harmonicity of a biharmonic function 𝑓(𝑥) 
as: 

𝐸𝐴𝐻𝐴𝑃(𝑓) = �‖∆𝑓(𝑥)‖2𝑑𝑠
𝜕Ω

 (20) 

where the integration is done solely on the boundary. Re-
call that ∆𝑓(𝑥) is harmonic, hence achieves mini-
mum/maximum values on the boundary. Therefore mini-
mizing ‖∆𝑓(𝑥)‖2 on the boundary bounds its values in the 
interior. We also experimented with integrating over the 
entire domain and obtained similar results. In our discrete 
setting, (20) becomes ‖𝑙‖2, where 𝑙 = 𝐵𝑓 + 𝐶𝑑 (Sec-
tion  4.3) and 𝑑𝑗 = 𝑠𝑗𝑛�𝑗  . Thus, given the vector of bounda-
ry values 𝑓, the only unknowns are the scalars 𝑠𝑗. 

Since negative values of 𝑠𝑗 lead to a non-bijective map, 
we restrict 𝑠𝑗 to be positive. Thus, minimizing 𝐸𝐴𝐻𝐴𝑃 boils 
down to a non-negative least squares problem with a non-
empty feasible region, which implies the existence of a 
global minimum. Figure 8 shows a square deformed into a 
diamond shape using harmonic coordinates, biharmonic 
coordinates with orthogonal unit length normal derivatives 
(Section  5.1) and the AHAP biharmonic map. The latter 
manages to create a map that satisfies the orthogonality 
constraints on the boundary while avoiding self-
intersections. Away from the boundary, the map resembles 
the harmonic deformation. 

5.4 Thickness-Preserving Shape Deformation 
Cage-based deformation follows naturally from the use of 
barycentric coordinates, nonetheless, manipulating the 
entire cage to produce a deformation is tedious and can 
lead to suboptimal results. To simplify the user’s task, we 
follow [IMH05, SMW06, WBCG09, BCWG09] and use 
the point-to-point deformation metaphor. The user selects a 
small set of control points inside the cage (usually at joints 
and extremities of the shape), and controls the deformation 
by repositioning only these control points. The idea is to 

Source 
Complex 
Biharmonic Cauchy 

Harmonic Biharmonic 

  



 
 

make the cage invisible to the user, although behind the 
scenes we solve an inverse problem. i.e., we search for a 
target cage that will transform the control points to their 
prescribed target locations. Since the number of control 
points is typically much lower than the number of cage 
vertices, the problem is under-constrained and requires a 
regularization term, similarly to other variational defor-
mation methods. 

Let us define the local thickness 𝜎(𝑥′) of a map 𝑓 at a 
boundary point 𝑥′ as: 

𝜎(𝑥′) = 𝑛�𝑡�𝑓(𝑥′)�𝐽(𝑥′)𝑛(𝑥′)  (21) 

𝐽(𝑥′)𝑛(𝑥′) is the normal derivative vector, denoted by  
𝑑(𝑥′), and 𝑛� is the target unit normal (at 𝑓(𝑥′) ). The local 
thickness 𝜎(𝑥′) measures the amount of stretch in the nor-
mal direction. In continuum mechanics terminology, this is 
simply the normal strain in the normal direction. In our 
discrete setting, 𝑑(𝑥′) is piecewise constant and assumed 
to be aligned with 𝑛�, hence the local thickness on the 𝑗th 
edge is: 

𝜎𝑗 = 𝑛�𝑗𝑡𝐽𝑗𝑛𝑗 = 𝑛�𝑗𝑡𝑑𝑗 = 𝑛�𝑗𝑡𝑛�𝑗𝑠𝑗 = 𝑠𝑗.  
We call a map that has unit local thickness at any bound-

ary point and orthogonal Jacobians, a thickness-preserving 
map. Note that the maps described in Section  5.1 are thick-
ness-preserving by construction. However, in this Section, 
instead of fixing the boundary as is done in Section  5.1, we 
fix only a small number of internal points. We then search 
the subspace of biharmonic maps and pick a map which is 
thickness-preserving while satisfying the point-to-point 
position constraints. 

Consider a small offset of the boundary curve in the di-
rection of the inward normal and the narrow band that 
surrounds the swept area. Intuitively, a thickness-
preserving map deforms this narrow band such that the 
image of the band maintains its width (but not necessarily 
its length). 

Such a map does not limit the change in the tangential 
component along the boundary and allows articulated ob-
jects to stretch their “bones”. Nevertheless, even though 
we disallow shear on the boundary (by setting 𝑑 to be 
equal to 𝑛�), shear and stretch may still appear as we move 
away from the boundary toward the interior of the shape. 
To tackle this, we design an energy that strives to mini-

mize changes in 𝑑. Note that since 𝑑 is constant on each 
edge, its derivative in the tangent direction vanishes. 
Hence we aim at minimizing changes only in the normal 
direction. Formally, we would like the vector 𝜕𝑑 𝜕𝑛⁄  to 
vanish. Since in general, it is impossible for this term to 
vanish in the presence of positional constraints (at the con-
trol points), we aim to minimize this term by defining the 
following energy functional: 

𝐸𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠(𝑓) = ��
𝜕2

𝜕𝑛2 𝑓
(𝑥′)�

2

𝑑𝑠
𝜕Ω

 (22) 

 

 
Figure 8: The unit square is mapped to a diamond shape: 
Harmonic coordinates produce shears near the boundary. 
A biharmonic map with 𝑠𝑗 = 1 (Section  5.1) overlaps itself 
in the middle. A biharmonic As-Harmonic-As-Possible map 
(Section  5.3) is smooth, bijective, and perfectly aligned with 
the boundary. 

 
 

Figure 7: Comparison of the deformation of a giraffe using VHM and our thickness-preserving method for three different 
positions of the control points. Our method easily handles shortening or elongation of the giraffe’s neck and tail, while 
VHM results in artifacts at the head and tail in an effort to preserve length. Note that our method correctly deals with bend-
ing when desired.  
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In our discrete setting, the integral is replaced with a sum 
over 𝑘 uniformly spaced boundary samples and the opti-
mization problem becomes: 

𝑓𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = argmin
�𝑓𝑗�𝑗=1

𝑚
�𝐸𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠(𝑓)� 

subject to: 
𝑓(𝑝𝑖) = 𝑞𝑖 ,   𝑖 = 1, … , 𝑏 

where b is the number of control points. Note that in the 
general case, the map 𝑓 depends both on 𝑓𝑗 and 𝑑𝑗, imply-
ing that the energy should be quadratic. However, we re-
stricted the map to be thickness-preserving, meaning that 
𝑑𝑗 = 𝑛�𝑗 = �𝑓𝑗+1 − 𝑓𝑗�

⊥ �𝑓𝑗+1 − 𝑓𝑗�� , hence, the map 𝑓 
and therefore the energy and the set of 𝑏 constraints, de-
pend (non-linearly) only on 𝑓𝑗. 

Experimental Evaluation 

We compare our thickness-preserving deformation method 
with the MLS [SMW06], ASAP and ARAP [IMH05], 
VHM [WBCG09] and BBW [JBPS11] methods. All share 
the same user interface. As a first sanity check, we place 
three control points on a horizontal bar; two at the far ends 
and one in the middle (illustrated in Figure 1). We then 
drag the middle control point upwards. Despite the sim-
plicity of this setting, it is still quite challenging for exist-
ing deformation methods since the target positions of the 
control points imply that the bar should change its length. 
As a result, methods that are based on some notion of 
isometry (distance preserving) will try to resist this change 
and respond with artifacts. 

As evident in Figure 1, the ARAP method results in dis-
continuity artifacts at the control points, while VHM pro-
duces a foldover in the middle of the bar and creates un-
natural bending near the end points. Our deformation is 
𝐶∞ at the control points and is the only one that preserves 
the overall shape of the bar. 

In Figure 7, we compare our method with VHM when 
deforming a giraffe shape. Note the distortion created by 
VHM at the head and tail of the giraffe when control 
points are pulled apart or brought close together. Figure 9 
compares our method with the ARAP and ASAP methods. 
Again, the control points are positioned in a configuration 
that suggests that the giraffe’s neck and legs should short-
en. ASAP reacts by uniformly scaling down the head and 
legs dramatically, while ARAP, in an effort to preserve 
distances, bends the neck and legs. Our method simply 
shortens them to satisfy the positional constraint. However, 
this behavior can be altered easily. By adding a third con-
trol point in the middle of the neck and dragging it to the 
side, the shortening effect is replaced with bending (Figure 
7 left). 

Figure 11 compares our method with the Bounded Bi-
harmonic Weights (BBW) method of Jacobson et al. 
[JBPS11]. BBW requires the additional user input of affine 
transformation per control point. In an attempt to automate 
this, Jacobson et al. proposed a heuristic to estimate rota-
tion matrices from the position of control points. While 
this automatic method does not produce satisfying results 
for this particular deformation, manually tweaking the 
rotations and scale values results in a pleasing deformation 
comparable to our automatic thickness-preserving algo-
rithm. 

 
Figure 9: Deformation of a giraffe by different algorithms 
using identical positional constraints. ARAP bends the 
neck and legs in order to accommodate the user con-
straints. ASAP reduces dramatically the overall size of 
head, tail and legs, creating unnatural effect. Thickness-
preserving biharmonic deformation simply shortens the 
neck and legs and extends the length of the tail as ex-
pected. 

6. Implementation details 

We have implemented our algorithms on an Intel i7 CPU 
with 8 GB of RAM. A typical number of cage edges for a 
fairly complicated model such as the Giraffe is 100. Each 
edge was subsampled (creating an extra 2-3 virtual vertices 
per edge) to achieve better accuracy.  

The computation of the biharmonic coordinates (Sec-
tion  4.3) was done in C++. Evaluating the basis functions 
and solving the relevant linear systems took 1 to 20 se-
conds of preprocessing time, depending on the complexity 
of the cage and the image resolution. All the cage-based 
deformation algorithms (Section  5 excluding  5.4) run in 
real time and achieve frame rates of at least 100fps for all 
the examples shown in this paper. To solve the optimiza-
tion problem of Section  5.3, we used the CVXGEN quad-
ratic programing solver [MB10] which turned out to be 
very efficient for problems with up to 50 variables. 

The solution of the optimization problem for the thick-
ness-preserving deformation (Section  5.4) was done in 
MATLAB using the non-linear constrained optimization 
solver (fmincon) from the Optimization Toolbox. We fed 
the solver with the analytic expression of the non-linear 
energy along with its gradient. Running times were some-
what slower, however we did manage to achieve interac-
tive rates for inputs with up to 150 degrees of freedom. We 
believe that incorporating a dedicated solver into our C++ 
framework will improve performance by an order of mag-
nitude. 

To evaluate the non-linear energy (Eq. 22), we need to 
compute the second normal derivatives of α and β which, 
in turn, contain the normal derivatives of the harmonic and 
biharmonic basis functions. These derivatives (along with 
all the other basis functions) are computed during the pre-
processing step. Although we were able to obtain closed-
form expressions for the derivatives of the basis functions 
(using a symbolic solver), the expressions for the bi-
harmonic functions turned out to be lengthy and we found 
that evaluating them numerically using a simple finite 
difference scheme leads to good results. 

In addition, we found that numerically evaluating the ex-
pression for the limits of the biharmonic basis functions on 
the boundary (which is needed for Eqs. (17) and (18)) is 

Source ARAP ASAP Biharmonic 



 
 

simple to implement and leads to accurate results. We 
simply offset the entire cage inwards by a small amount 
(1𝑒−6 in all our examples) and evaluate the expressions on 
the offset. 

7. Summary and Future Work 
We have developed biharmonic barycentric coordinates as 
a useful tool for interpolating data values as well as normal 
derivatives from the boundary of a polygonal shape to its 
interior.  Using the Boundary Elements Method, the com-
putation of the coordinates is efficient and accurate and 
does not require discretization of the entire domain. 

In the context of planar deformations, biharmonic coor-
dinates enable full control over the boundary shape (as do 
harmonic coordinates) as well as boundary derivatives, 
thus can be regarded as a direct generalization to harmonic 
coordinates. Some of the maps within this richer subspace 
are superior to their harmonic counterparts (see Figures 5, 
8, 10). Yet using biharmonic coordinates, in general, re-
quires more user input to which it might be sensitive. For 
example, providing incorrect boundary derivative data 
might lead to undesirable effects. This is demonstrated in 
Figure 4 (bottom-right) and Figure 8 (middle). Also, our 
biharmonic coordinates do not possess the min / max prin-
ciple that harmonic coordinates have; hence the coordi-
nates are not guaranteed to be positive. 

To alleviate these limitations and in an effort to simplify 
the user interaction, we provide several ways for automati-
cally adjusting the boundary derivatives based only on the 
given boundary positions. 

In addition, we have proposed a novel variational ap-
proach to deformation that encourages stretching in the 
tangent direction while eliminating shear in the vicinity of 
the boundary. We call it “thickness-preserving” defor-
mation and have demonstrated its advantages over other 
state-of-the-art methods. This method has the advantage 

that it is based solely on boundary formulation and does 
not require discretization of the interior e.g. by meshing 
(ARAP) or finding the skeleton of the shape (VHM).  

Our biharmonic coordinates were defined in 2D. Never-
theless, they can be derived in any dimension (although 
closed-form expressions might be more difficult to obtain). 
In the future, we would like to explore their behavior on 
volumetric models. We believe that a 3D extension of the 
thickness-preserving method may be promising. 

The basic construction we used in this paper can also be 
extended to higher orders using polyharmonic functions, 
which are a generalization of harmonic and biharmonic 
functions. Although the motivation for this in the context 
of shape deformation is not obvious, we provide the first 
few steps of the derivation in Appendix B. 

Figure 10 illustrates a deformation of a square to an L-
shaped figure. In general, doing this with any barycentric 
coordinates will result in a ”spill” outside the boundary. To 
overcome this, we split the square into two triangles and 
deform each part separately and then glue the results back 
together. We repeat the experiment using harmonic and 
biharmonic coordinates. Since harmonic coordinates do 
not allow any control over the normal derivative, the map 
is not smooth along the joint seam. In the biharmonic case, 
we can set the normal derivatives on both sides of the seam 
to be identical, resulting in a map which is smooth on the 
seam. This technique may be used to create 𝐶1 basis func-
tions on non-convex finite elements, which may be more 
powerful for physical simulations than the 𝐶0 harmonic 
basis functions used by Martin et al. [MKB*08]. 
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Appendix A 
Closed form expressions of the biharmonic basis func-
tions 

All of the basis functions are defined by integrals which 
can be solved analytically. To simplify calculations, we 
translate and rotate each edge: 

𝑒𝑖 = 𝑣𝑖+1 − 𝑣𝑖  

such that it coincides with the interval [0, 𝑐𝑖] on the 𝑥-axis, 

where 𝑐𝑖 = ‖𝑒𝑖‖. 

Denote the vector 𝑢𝑖 as: 
�𝑢𝑖𝑥 ,𝑢𝑖

𝑦� = (𝑥0,𝑦0) − 𝑣𝑖 

where (𝑥0,𝑦0) is the point at which we want to evaluate 
the basis functions. 
we first apply the affine transformation 𝑇𝑖(𝑥0,𝑦0): 

𝑇𝑖(𝑥0,𝑦0) =
1
𝑐𝑖

(𝑢𝑖𝑥𝑒𝑖𝑥 + 𝑢𝑖
𝑦𝑒𝑖

𝑦 ,𝑢𝑖
𝑦𝑒𝑖𝑥 − 𝑢𝑖𝑥𝑒𝑖

𝑦) 

then, instead of evaluating the solution at (𝑥0,𝑦0), we 
evaluate it at (𝑥𝑖 ,𝑦𝑖) = 𝑇𝑖(𝑥0,𝑦0). 
To evaluate the basis functions, we first evaluate the fol-
lowing intermediate terms: 

𝐿1𝑖   = 𝑙𝑜𝑔�𝑥𝑖2  + 𝑦𝑖2� 

𝐿2𝑖   = 𝑙𝑜𝑔�𝑥𝑖2 + 𝑦𝑖2 + 𝑐𝑖2 − 2𝑐𝑖𝑥𝑖� 

𝐴𝑖     = 𝑡𝑎𝑛−1 �
𝑥𝑖
𝑦𝑖
� + 𝑡𝑎𝑛−1 �

𝑐𝑖 − 𝑥𝑖
𝑦𝑖

� 

𝜙�𝑖𝐻   =
2𝑥𝑖𝐴𝑖 − 𝑦𝑖(𝐿1𝑖 − 𝐿2𝑖)

4𝜋𝑐𝑖
 

𝜙�𝑖𝐵𝐻 =
1

16𝜋𝑐𝑖
�4𝐴𝑖𝑥𝑖𝑦𝑖2 − 𝐿2𝑖𝑦𝑖�𝑥𝑖2 − 𝑦𝑖2 − 𝑐𝑖2�

+ 𝐿1𝑖𝑦𝑖�𝑥𝑖2 − 𝑦𝑖2� − 2𝑦𝑖𝑐𝑖(𝑐𝑖 + 𝑥𝑖)� 

Finally, the basis functions are given by: 

𝜓𝑖𝐻 = −
1

4𝜋
(2𝐴𝑖𝑦𝑖 + 𝐿1𝑖𝑥𝑖 − 2𝑐𝑖 + (𝑐𝑖 − 𝑥𝑖)𝐿2𝑖) 

𝜙𝑖𝐻 = 𝜙�𝑖−1𝐻 − 𝜙�𝑖𝐻 +
𝐴𝑖
2𝜋 

𝜓𝑖𝐵𝐻 = −
1

144𝜋 �3𝐿1𝑖𝑥𝑖�3𝑦𝑖2 + 𝑥𝑖2�

+ 3𝐿2𝑖(𝑐𝑖 − 𝑥𝑖) �𝑐𝑖2 − 2𝑐𝑖𝑥𝑖 + 3𝑦𝑖2 + 𝑥𝑖2�

+ 12𝐴𝑖𝑦𝑖3 + 24 �𝑐𝑖2𝑥𝑖 − 𝑐𝑖𝑥𝑖2� − 8𝑐𝑖3 − 30𝑐𝑖𝑦𝑖2� 

𝜙𝑖𝐵𝐻 = 𝜙�𝑖−1𝐵𝐻 − 𝜙�𝑖𝐵𝐻

+
𝑦𝑖
8𝜋 �2𝐴𝑖𝑦𝑖 + 𝐿1𝑖𝑥𝑖 − 3𝑐𝑖 + 𝐿2𝑖(𝑐𝑖 − 𝑥𝑖)� 

Appendix B 
Polyharmonic Coordinates 
Our construction of biharmonic coordinates can be gener-
alized to polyharmonic coordinates. A polyharmonic func-
tion of degree 𝑟 is a function 𝑢(𝑥) that satisfies: 

∆𝑟𝑢(𝑥) = 0 
The corresponding Dirichlet conditions consist of up to 

the 𝑟-th derivative in normal direction of 𝑢 on the bounda-

ry. The analogous Green’s third identity for the poly-
Laplacian [ACL83] consists of 𝑟 equations, the 𝑠th of 
which is:  

∆𝑠−1𝑢 = � �∆𝑖−1𝐺𝑖
𝜕∆𝑠−𝑖𝑢
𝜕𝑛 − ∆𝑠−𝑖

𝜕𝐺𝑖
𝜕𝑛 ∆𝑖−1𝑢

𝜕Ω

𝑠

𝑖=1

 

where ∆0𝑢 = 𝑢 and 𝐺𝑖 is the fundamental solution of the 
𝑖th harmonic equation: 

𝐺𝑖(𝑥, 𝑥′) =
1

2𝜋
‖𝑥 − 𝑥′‖𝑖−1(𝑎𝑖 ln‖𝑥 − 𝑥′‖ − 𝑏𝑖) 

and 𝑎𝑖 and 𝑏𝑖 are given by the recurrence: 
𝑎1 = 1,                          𝑏1 = 0                                                

𝑎𝑖 =
𝑎𝑖−1

4(𝑖 − 1)2 , 𝑏𝑖 =
𝑎𝑖−1

4(𝑖 − 1)2 �
𝑎𝑖−1
𝑖 − 1 + 𝑏𝑖−1� 

We can follow the same path as in Section 4, discretize 
the boundary and assume that for each 𝑟, ∆𝑟𝑢 is linear and 
𝜕∆𝑟𝑢
𝜕𝑛

 is constant on each edge. Integrating results in a set of 
𝑟 equations similar to (15). We can then solve for 𝑓 and 
the derivatives and form the polyharmonic coordinates. 
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