
Optimal control via second order sensitivity

analysis

Simon Zimmermann Roi Poranne Stelian Coros

We show how to solve optimal control problems of the form

min
u

O(x,u), (1a)

s.t. g(x,u) = 0, (1b)

where x are state variables, u are control variables. We use second order sensi-
tivity analysis, and this short write-up presents a very sanitized derivation. For
a conceptually similar but more formal derivation, we refer the reader to [1]. The
challenge of solving (1) usually comes from the non-linearity of (1b). Ideally,
(1b) would yield an explicit relationship x(u), which would then be substituted
into (1a), resulting in the unconstrained problem

min
u

O(x(u),u). (2)

However, this not generally the case, and in fact, not quite that necessary. In-
deed, the main reason for transforming (1) into (2) is for easily computing the
derivatives of O(x(u),u), to use with a gradient-based optimization. However,
the derivative can actually be readily computed using the implicit function the-
orem.

We begin by applying the chain rule on O(x(u),u):

dO

du
=
∂O

∂x

dx

du
+
∂O

∂u
, (3)

The term S := dx
du is known as the sensitivity term. The analytic expression for

it can be found using the fact that g(x,u) is always zero (i.e. we assume that
for any u we can compute x(u) such that Eq. 1b is satisfied), which implies:

dg

du
=
∂g

∂x
S +

∂g

∂u
= 0. (4)

By rearranging this equation, we get:

S = −
(
∂g

∂x

)−1
∂g

∂u
, (5)

1

ar
X

iv
:1

90
5.

08
53

4v
1 

 [
m

at
h.

O
C

] 
 2

1 
M

ay
 2

01
9



and plugging into (3), we obtain:

dO

du
= −∂O

∂x

(
∂g

∂x

)−1
∂g

∂u
+
∂O

∂u
. (6)

We note that through a reordering of matrix multiplications, the well-known
adjoint method avoids computing dx

du directly as it evaluates dO
du . This is often-

times more computationally efficient. However, we can leverage dx
du to derive a

second-order solver that exhibits much better convergence properties than first
order alternatives.

To begin with, we differentiate (3):

d2O

du2
=

d

du

dO

du
=

d

du

(
∂O

∂x
S

)
+

d

du

∂O

∂u
. (7)

The formulas above involve third-order tensors, which lead to notation that
is slightly cumbersome. For conciseness, we treat tensors as matrices and as-
sume that contractions are clear from context. The second term in Eq. 7 is
straightforward:

d

du

∂O

∂u
= ST ∂2O

∂x∂u
+
∂2O

∂u2
, (8)

while the first term evaluates to

d

du

(
∂O

∂x
S

)
=

(
d

du

∂O

∂x

)
S +

∂O

∂x

(
d

du
S

)
, (9)

with
d

du

∂O

∂x
= ST ∂

2O

∂x2
+

∂2O

∂x∂u
. (10)

Here, d
duS is a third-order tensor, and ∂O

∂x

(
d
duS

)
stands for

∂O

∂x

(
d

du
S

)
=
∑

i

∂O

∂xi

(
d2xi
du2

)
.

The second-order sensitivity term d
duS must be further broken down:

d

du
S =

(
ST ∂

∂x
S +

∂

∂u
S

)
. (11)

The partial derivatives of S can be found by taking the second derivatives in
(4) and rearranging the terms. This results in

∂

∂x
S = −

(
∂g

∂x

)−1(
∂2g

∂x2
S +

∂2g

∂u∂x

)
, (12)

∂

∂u
S = −

(
∂g

∂x

)−1(
∂2g

∂x∂u
S +

∂2g

∂u2

)
, (13)

where once again we assume that the tensor expressions are self-evident. Com-
bining all of the terms above leads to the following formula for the Hessian:

d2O

du2
=
∂O

∂x

(
ST ∂

∂x
S +

∂

∂u
S

)
+ ST

(
∂2O

∂x2
S + 2

∂2O

∂x∂u

)
+
∂2O

∂u2
. (14)

2



Generalized Gauss-Newton Although Newton’s method generally converges
much faster than L-BFGS or gradient descent, there are two issues with it. First,
evaluating the second-order sensitivity term takes a non-negligible amount of
time. Second, the Hessian is often indefinite, and needs to be regularized. Both
problems can be dealt with by simply excluding the tensor terms in (14). The
result is a generalized Gauss-Newton approximation for the Hessian:

H = ST ∂
2O

∂x2
S + 2ST ∂2O

∂x∂u
+
∂2O

∂u2
. (15)

Although H is not guaranteed to be positive-definite, we note that in many cases,
O is a convex function of x and u, and therefore the first and last terms are
always positive definite. Additionally, O commonly does not explicitly couple
x and u, and therefore the mixed derivative (i.e. the second) term vanishes,
which means that overall H is positive definite.

Sensitivity analysis for trajectories The implicit relationship described
by Eq. (1b) is very general, and can easily be derived for different types of
dynamical systems. Turning directly to the time-discretized setting, the state
vector x has dimension nT , where T is the number of time steps and n is the
number of variables representing the state at one time step. In this setting, we
let xi, the i-th n-block in x, denote the configuration of the system at time ti.
The dynamical system obeys the state equation

g (xi, ẋi, ẍi,ui) = 0 (16)

where ẋi, ẍi are time-discretized velocity and acceleration. For a simple, first
order approximation, ẋ = (xi−xi−1

h ) and ẍ = (xi−2xi−1+xi−2

h2 ), and so (16) can
also be written as

g (xi,xi−1,xi−2,ui) = 0 (17)

Starting from an input control trajectory u, and two fixed configurations, x0

and x−1, the entirety of x can be via forward simulation.
The standard numerical integration scheme also reveals the structure of the

implicit relationship described by Eq. (1b). It is easy to see that the time
domain imposes a very specific structure on the system of equations that must
be solved to compute the Jacobian dx

du in Eq. 4. This structure is visualized in
Fig. 1, and can be exploited to speed up computations. In particular, since g
depends explicitly only on xi, xi−1, xi−2 and ui (i.e. all other partial derivatives
are 0), ∂g

∂u has a block diagonal form, and ∂g
∂x has a banded block diagonal form.

This allows us to solve the resulting system using block forward-substitution,
rather than storing and solving the entire linear system represented by ∂g

∂x . We
also note that the resulting S is block triangular, which correctly indicates that
xi does not depend on uj if j > i, or intuitively, the control at any moment in
time only affect future states.

3



S =

−

∂G

∂p

















=

−1
∂G

∂x

−1

−

Figure 1: The structure of the system can be used to compute S faster by block
forward-substitution.

Iterative optimization Using either d2O
du2 or its approximation H, we can

minimize (1) using a standard unconstrained optimization scheme, but we note
one key difference: for each candidate u, we must always compute the corre-
sponding x to ensure that (1b) holds before evaluating any of the derivatives.

Once ∂O
∂u and H (or d2O

du2 ) are computed, the search direction d is found by
solving:

Hd = −dO

du
. (18)

We use a backtracking line search to find the step size α, where again, x need
to be recomputed for each test candidate u = u + αd in order to evaluate
O(x(u),u). We summarize the optimization procedure in Algorithm 1.

Algorithm 1: Trajectory optimization

Input: Dynamical system, initial u, initial x0, ẋ0,
Output: Optimal control trajectory u

while criterion not reached do
Compute x(u) using forward simulation
Compute dO

du (Eq. (3))
Compute H ((14) or (15))
Solve Hd = −dO

du
Run backtracking line search in d
/* Simulate after every line search iteration */

end

References

[1] Richard H. Jackson and Garth P. Mccormick. Second-order sensitivity anal-
ysis in factorable programming: Theory and applications. Math. Program.,
41(1-3):1–27, May 1988.

4


