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Abstract—We present an optimization framework for grasp
and motion planning in the context of robotic assembly. Typically,
grasping locations are provided by higher level planners or as
input parameters. In contrast, our mathematical model simul-
taneously optimizes motion trajectories, grasping locations, and
other parameters such as the pose of an object during handover
operations. The input to our framework consists of a set of
objects placed in a known configuration, their target locations,
and relative timing information describing when objects need to
be picked up, optionally handed over, and dropped off. To allow
robots to reason about the way in which grasping locations govern
optimal motions, we formulate the problem using a multi-level
optimization scheme: the top level optimizes grasping locations;
the mid-layer level computes the configurations of the robot for
pick, drop and handover states; and the bottom level computes
optimal, collision-free motions.

We leverage sensitivity analysis to compute derivatives an-
alytically (how do grasping parameters affect IK solutions,
and how these, in turn, affect motion trajectories etc.), and
devise an efficient numerical solver to generate solutions to the
resulting optimization problem. We demonstrate the efficacy of
our approach on a variety of assembly and handover tasks
performed by a dual-armed robot with parallel grippers.

Index Terms—Grasping, Motion and Path Planning, Assembly

I. INTRODUCTION

GRASP planning and motion planning are two major
challenges in robotics. They are commonly addressed

separately, and indeed, in many cases, this treatment proves
to be sufficient. For example, simple pick-and-place tasks
in environments clear of obstacles can reliably be addressed
by solving the two problems independently. As such, many
grasping techniques focus solely on the grasping itself, without
accounting for the rest of the task. As a result, a motion
planning following grasp planning might return with no fea-
sible solution. In other words, the existence of obstacles
might cause an uninformed grasp planner to provide a grasp
for which it is impossible to find a collision-free motion.
This type of challenge occurs often in assembly tasks, where
the environment is initially free of obstacles, but becomes
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Fig. 1. Assembly of a simple triple truss structure. As the assembly process
progresses, the environment becomes more and more constrained. While part
(1) can be assembled without concerns, for part (2) and (3) the grip must be
adapted to avoid collisions.

increasingly constrained as construction progresses (Fig. 1).
Evidently, as assembly tasks become more and more complex,
a more comprehensive approach is required.

Our goal in this paper is to lay an alternative, foundational
framework for simultaneous optimization of grasps and mo-
tions. The main challenge is that motion optimization assumes
that the grasp is already known, but the grasp optimization
must be motion aware in order to account for potential
collisions. This chicken-and-egg problem has lead us to for-
mulate it as a multilevel optimization [1]. The special case
of an unconstrained bilevel problem is generally expressed as
follows:

min
x1,x2

O2(x1,x2) (1a)

s.t. x1 = arg min
x∗
1

O1(x
∗
1,x2), (1b)

where O1,O2 are objective functions, and x1,x2 are two
distinct subsets of variables. Essentially, the problem in (1)
asks to minimize O1(x1,x2) w.r.t. both sets of variables,
under the assumption that for any x2, the subset x1 minimizes
O1(x1,x2). The problems in (1a) and (1b) are called the top
and bottom layer, respectively. A multilevel problem is the
straightforward generalization of (1).
Why multilevel? To illustrate the benefit of a multilevel
formulation, we consider the problem of optimal grasping
in isolation. One can potentially first search for an optimal
grasping location, and then attempt to find the corresponding
robot configuration via inverse kinematics (IK). This is an
attractive approach because the burden of finding joint angles
falls on a ”black box” IK solver. Clearly, the whole approach
will fail if the grasping location is not reachable, however, or
if the robot has to get into awkward configurations due to its



kinematic limitations. If we consider an optimization based IK
solver instead, we can phrase the problem as follows: ”find the
optimal grasping location, subject to the corresponding IK so-
lution being optimal”. This informal description is essentially
a bilevel problem, and its solution is both optimal in terms of
the grasp, and achievable in terms of the joint angles. A more
precise description is provided in section III.

We cast the problem of simultaneous grasp and motion
planning using a trilevel optimization approach: the top layer
finds optimal grasping locations, which are expressed in the
local coordinate frame of the object being manipulated. The
mid-layer finds optimal robot poses for the pick and place
configurations using inverse kinematics. The bottom layer finds
optimal, collision-free motion trajectories that connect these
IK configurations. We describe the details of our formulation
in section IV, and we emphasize that a solution to our problem
is optimal in terms of both the grasping location and the
overall motion. In other words, solutions represent the optimal
grasp for the optimal motion given a specific assembly task.
Having formulated the problem in such a way, we turn to the
development of an efficient solution strategy. To this end, we
leverage sensitivity analysis to compute first and second total
derivatives of the top layer, which allows us to employ an
efficient numerical solver based on Newton’s method.

We demonstrate the performance of our framework on a set
of pre-sequenced assembly tasks with wooden blocks, using
a UR5 and a dual-armed YuMi R© IRB 14000 with parallel
grippers. We allow only longitudinal grasping similar to [2],
but without any sliding or other in-hand corrections. This
setup highlights the necessity for joint optimization of grasps
and motion trajectories: without optimizing grasping locations,
many assembly problems are infeasible.

II. RELATED WORK

Grasping and manipulation of objects has been investigated
since the dawn of robotics, and is still one of the most active
fields in robotic research. Due to the vastness of this topic,
we mention only the most closely related and relevant papers.
Recent reviews [3], [4], [5], [6], [7] discuss the various appli-
cations, challenges and algorithms, and the different aspects
of grasping, such as sensing and control, optimization and
machine learning. Different grasping strategies for different
scenarios are discussed in [8].

Much of the research effort is aimed at solving the problem
known as grasp and motion planning. Generally, the approach
is to sample the grasp space and strategically pick grasps
that are likely to be viable. If motion planning fails given the
grasp, then a new grasp is picked until the motion planning
is successful. This approach is similar to the task and motion
planning (TAMP) [9], which generally suggests to treat motion
planning as a black-box, and focus on task planning instead.
This way, any motion planner can be used, as long as it
can report whether it was successful or not. Examples of
this approach appear in the work of Kragic and colleagues,
e.g. ([10], [11]), as well as Huh et al. [12], which are based
on sampling, or Ghalamzan et al. [13], which is learning-
based. Another related stream of research led by Wan, Harada

and colleagues focuses on object reorientation via regrasping,
which we also target. see for example [14], [15], [16]. In
addition, our model also supports two-hand regrasping, a
capability useful for handing-over objects between arms, or
to help one arm reorient an object using the other arm. This
application was also discussed for example in [17], which
proposed a sampling based approach similar to the previously
mentioned techniques. Toussaint et al. [18], [19] considers task
and motion planning, where motion planning includes grasping
as well. The method builds on the concept of Logic-Geometric
Programming [20], which uses conditional constraints based
on a symbolic action sequence, that are optimized within the
same framework. In contrast to the above mentioned work, we
consider only the grasp and motion planning problem from a
local, gradient-based optimization perspective. We treat the
problem as a unified optimization problem, and propose a
new optimization algorithm for it, which can potentially be
used as the TAMP ”black-box” solver. We mention that [18]
and previous work use a general, custom built solver [21] that
implements a standard Gauss-Newton method, with constraints
handled using an improved Augmented Lagrangian method.
Our solver on the other hand, is a novel solver dedicated to
general multi-level optimization problems, which we apply to
grasp and motion planning.

More related to our approach, [22] too formulates the prob-
lem as a multilevel optimization where the low level problem
is motion planning. However, their top level is discrete, and
does not leverage the differentiability of motion planning.
We demonstrate that grasping locations can be efficiently
optimized as continuous optimization parameters. Other work
that consider multi-level optimization include [23] and [24]. In
these cases, the goal is to solve a top level problem, subject
to the solution being in the optimal set of the lower level
problem. The underlying assumption is that the bottom level
problem has an optimal set with high dimensionality due to
redundancy, which is determined by the next level problem.
The optimal set of the bottom level is locally approximated
by a linear subspace (possibly with linear inequalities), from
which a smaller subspace is selected based the next level
problem. The process starts from the bottom, and iteratively
produces finer and finer optimal sets, until it reaches the top
level. In contrast, our approach does not assume there is a
redundancy, but finds an optimal solution for the lower levels
given the current candidate for the higher levels. Additionally,
it informs the higher level, via the chain rule, how a change
in the high level candidate will affect the low level solution.

As stated, we assume that the sequencing is predetermined,
and target pick-and-place tasks which are typical during as-
sembly operations. We note however that our framework can
run several tasks concurrently. As we exclusively deal with
wooden blocks, we can restrict the grasp space to longitudinal
grasping, which assumes that the grippers only come in contact
with the sides of the block. This space was utilized in several
recent publications, for various in-hand manipulation tasks.
For example, [2] used the dynamics of the arm and careful
friction control to slide the object in the gripper. Similarly,
[25] uses friction to pivot the object. Careful motion planning
in the same space was used in [26] to solve the so-called
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Fig. 2. System overview using a UR5. Given a pick and a place location of
the block, our system simultaneously computes the optimal grasp location,
the kinematics, and the motion.
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Fig. 3. We use a longitudinal grasp model, which can be parameterized by the
x and y coordinates of the contact point, and the angle θ of the end effector.

”Shallow-Depth Insertion”. In contrast to these methods, we
only consider the challenge of precise gripping and do not
allow in hand manipulation.

III. OVERVIEW

Our goal in this paper is to demonstrate a complete solution
for pre-scheduled (i.e. predefined pick up and drop off timings)
assembly planning problems. To this end, we start describing
our method on a simple pick-and-place task, as generalizing
to more complex tasks is rather straightforward. Thus, given
an initial and final pose of a block, we jointly search for the
optimal grasp and the optimal motion. We show an overview
of our optimization framework in Fig 2. Assuming the motion
trajectory comprises of n+1 time steps, let T0 and Tn be the
initial and final transformations that take the block from its
local frame to the world frame. The position and orientation
of the gripper (i.e. the grasp location) as it makes contact
with the block are expressed in the block’s local coordinate
frame. Since the grasping is longitudinal, it is enough to
describe the grasping configuration in terms of the x and y

coordinates of the point on the contact side of the block and the
orientation θ of the gripper (See Fig. 3). We let p = (x, y, θ).
The robot is represented by its kinematic chain and its joint
angles q = (q1, . . . , qm) ∈ Rm. We denote the joint angles
at time step i by qi and the joint limits by box constraints
qmin ≤ qi ≤ qmax. Thus, given grasping parameters p and a
transformation T from the local coordinate frame of the block
to world coordinates, we can solve the inverse kinematics
problem to find q. We do so using an optimization approach.
More precisely, we denote the forward kinematics function
that returns the world pose of the end effector by K(q), and
solve the following optimization problem:

min
q

‖K(q)− T(p)‖2 (2a)

s.t. qmin ≤ q ≤ qmax. (2b)

This problem is the basis of the mid-level optimization scheme
we discuss in the following section. As described in the
introduction, we note again that if p is a parameter given by an
independent grasp planner, then successfully solving (2) (i.e.
reaching a value of 0 for the objective), would complete the
picture and provide the joint angles. A more inclusive, bilevel
formulation is the following:

min
p,q

Ograsp(p,q) (3a)

s.t. q = arg min
q∗

‖K(q∗)− T(p)‖2 (3b)

s.t. qmin ≤ q∗ ≤ qmax, (3c)

where (3b),(3c) are the same as the optimization problem in
(2). We can think of this optimization as a function q(p) that
returns the joint angles for a specific grasping location. If this
function was known explicitly, we could have substituted q for
q(p) in (3), and write the equivalent unconstrained problem

min
p

Ograsp(p,q(p)).

Unfortunately, there does not exist a closed form solution in
general. Nevertheless, to solve the optimization problem above
using Newton’s method, we only need to be able to compute
the first and second total derivative of Ograsp(p,q(p)), which
turns out to be rather simple using sensitivity analysis. We
elaborate on this in section IV-B.

Before we move on, we mention that our implementation
handles joint limit constraints using barrier functions which are
inspired by interior point methods. This allows us to employ
unconstrained optimization methods which generally converge
faster. For example, instead of the constraint qi > qi,min, we
add a barrier function B(qi − qi,min) to the objective, where
B(t) quickly increases as t approaches zero. Thus, in the
following we omit constraints like (2b), since they will be
expressed as part of the objective function. More details appear
in section IV-C.



IV. A MULTILEVEL FORMULATION

In this section we describe the optimization problem, first
without going into the details of every objective. We then
explain our solution for general multilevel problems, based
on sensitivity analysis. Finally, we provide the details of our
formulation.

A. The optimization problem

As noted, a convenient approach to jointly optimize grasps
and motions is via multilevel optimization. There are countless
ways of splitting the problem into levels. The specific approach
we choose reflects the notion that boundary conditions should
be handled on higher levels, and that given a set of boundary
condition, ”filling-in” the missing parts is simpler. Thus, in our
case, the boundary conditions of the motion qi, i = 0, . . . , n,
are the pick and place joint angles given by q0 and qn. These
in turn are determined by their ”boundary conditions” e.g.
desired end effector poses, which are none other than the
grasping points T0(p) and Tn(p). Finally, the local grasping
point itself, p, is optimized in the top level.

More formally, we define the prototype for our problem
using this notation:

min
p,q0n,Q

Ograsp(p,q0n,Q) (4a)

s.t. q0n = arg min
q∗
0n,Q

∗
Opose(p,q

∗
0n,Q

∗) (4b)

s.t. Q = arg min
Q∗

Omotion(p,q0n,Q
∗), (4c)

where we stack together the pick-and-place joint angles q0

and qn and denote them by q0n, and denote the rest of the
qi’s for i = 1, . . . , n− 1 by Q. We explain how to solve this
problem in the following.

B. Optimization

The basis for our approach to solve (4) dates back to at
least [27], and appears under many different names, such
as the adjoint method or sensitivity analysis [28]. Originally
employed for optimization with equality constraints, the goal
is to compute the derivative of the top level in terms of the
low-level variables only. This is done using the chain-rule and
the implicit function theorem.

The derivation for the bilevel case is common and can be
found in literature. Here we derive the extension to trilevel
optimization. We begin by writing (4) in a more compact and
symmetric form:

x3 =arg min
x∗
1 ,x

∗
2 ,x

∗
3

O3(x
∗
1,x
∗
2,x
∗
3) (5a)

s.t. x2 = arg min
x∗
2 ,x

∗
1

O2(x
∗
1,x
∗
2,x3) (5b)

s.t. x1 = arg min
x∗
1

O1(x
∗
1,x2,x3), (5c)

The bottom two layers are essentially a bilevel problem. In
the continuous setting, the constraint (5c) can be equivalently
posed as

g1(x1,x2,x3) :=
d

dx1
O1(x1,x2,x3) = 0.

With that, [29] shows how to compute the sensitivities dx1

dx2

and the total derivative of O2 w.r.t. x1. In our notation,

dx1

dx2
= −

(
∂g1

∂x1

)−1
∂g1

∂x2
, (6)

dO2

dx2
=
∂O2

∂x1

dx1

dx2
+
∂O2

∂x2
. (7)

To compute dO3

dx3
, we apply a similar procedure: We first

observe that

g2(x1,x2,x3) :=
d

dx2
O2(x1,x2,x3) = 0.

Taking the total derivative w.r.t x3 we get,

dg2

dx3
=
∂g2

∂x3
+
∂g2

∂x2

dx2

dx3
+
∂g2

∂x1

dx1

dx2

dx2

dx3
= 0,

from which we get

dx2

dx3
= −

(
∂g2

∂x2
+
∂g2

∂x1

dx1

dx2

)−1
∂g2

∂x3
. (8)

Then, all that is left to do is compute dO3

dx3
using the chain-rule

and substitute (6) and (8):

dO3

dx3
=
∂O3

∂x3
+
∂O3

∂x2

dx2

dx3
+
∂O3

∂x1

dx1

dx2

dx2

dx3
.

Next, we compute the second derivative d2O3

dx2
3

. We again
follow [29] and only compute a positive definite approximation
that does not include tensor terms. This is beneficial since
on one hand, it guarantees a descent direction and on the
other hand, the evaluation of the approximation is cheaper.
The approximation, in our notation, is

d2O2

dx2
2

≈ST
1

∂2O2

∂x2
1

S1 + ST
1

∂2O2

∂x1∂x2
+

+

(
∂2O2

∂x1∂x2

)T

S1 +
∂2O2

∂x2
2

,

where S1 := dx1

dx2
, and by re-using this term and using the

same strategy we obtain,

d2O3

dx2
3

≈ST
2

d2O2

dx2
2

S2 + ST
2

∂2O3

∂x2∂x3
+

+

(
∂2O3

∂x2∂x3

)T

S2 + ST
3

∂2O3

∂x1∂x3
+

+

(
∂2O3

∂x1∂x3

)T

S3 +
∂2O3

∂x2
3

,

where S2 := dx2

dx3
and S3 = dx1

dx2

dx2

dx3
.

With both d2O3

dx2
3

and dO3

dx3
we can use Newton’s method

to compute a search direction for x3 and optimize O3. One
important issue to note is that this approach assumes and
requires that g1 = g2 = 0. Therefore, before we can use
dO2

dx2
, we must optimize O1, and before we can use dO3

dx3
, we

must optimize O2. We optimize those using Newton’s method
as well.



Collision avoidanceBefore collision

Fig. 4. Using our system, the user can interactively manipulate the obstacle,
and the grip will automatically change accordingly. We use collision spheres
as proxies for the objects, as shown. Please refer to the accompanying video
to view the real-time interaction.

C. Objectives and constraints

We discuss the particular choices we made for the different
objectives in the different levels, starting from the low-level:
the motion optimization.
The motion level. This level assumes that q0 and qn are
given, and is required to find an interpolating motion that is
optimally smooth, collision-free, and respect joint limits. For
smoothness, we require the acceleration of the joint angles to
be minimized. This is obtained by the objective

Osmooth(q0,Q,qn) =
∑
‖qi−1 − 2qi + qi+1‖2.

Additionally, we require the end effectors to approach the
pick and place poses slowly in order to account for the time
necessary to open and close the grippers, i.e. we would like
the joint velocity to be minimized at the ends of the trajectory:

Oslow(q0,Q,qn) = ‖q1 − q0‖2 + ‖qn−1 − qn‖2.

As mentioned, we replace the joint limit by a soft barrier
function. To this end, we define unilateral quadratic functions

B+
c (t) =

{
0 t ≤ c
(t− c)2 t > c

B−c (t) =

{
(t− c)2 t ≤ c
0 t > c

.

and for each joint angle qij at timestep i we add the corre-
sponding term:

Olimits,i(qij) = B+
qmax,i

(qij) +B−qmin,i
(qij).

To avoid collisions, we use the same collision model as in [30],
where the robot arms, obstacles and blocks are approximated
by spherical proxies (see Fig. 4 for example). We denote this
objective by Ocollision(q) and apply it to each qi. Finally, we
define Omotion to be a weighted sum of the above-mentioned
objectives.
The IK level. In this level we are given the grasp poses p as
input, and the objective is to find the appropriate joint angles.
This is the same as the objective in (2a), applied to q0 and
qn, that is,

OIK(q0,qn,p) = ‖K(q0)− T0(p)‖2 + ‖K(qn)− Tn(p)‖2.

In addition, we apply the same joint limit penalty as above to
q0 and qn.
The grasp level. The main objective of this level is to find
the grasping parameters p. The only requirement that must be
fulfilled is that p lies within the block. To enforce this, we
use a penalty similar to (IV-C), namely,

Ograsp(p) = B+
bx
(x) +B−−bx(x) +B+

by
(y) +B−−by (y).

where we recall that p = (x, y, θ) and the block’s dimensions
on the grasped side are [−bx, bx]× [−by, by]. In addition, we
add several of the lower level objectives to the high level as
well. These are the collision avoidance, smoothness and IK
terms. This is a very important step, as we illustrate with this
example: The mid-level optimization solves for an IK solution
given grasp parameters p. As we employ an optimization-
based approach, unreachable configurations also correspond
to a minimum of OIK – this means the gradient of this
objective with respect to q0 and qn is 0, but the objective
does not reach a value of 0. Consequently, at the top level,
the gradient of the overall objective captures the way in which
the IK solution changes with respect to p, and how this
change affects OIK in turn. This enables p to be adjusted
such that the IK solution becomes feasible. Similarly, this
formulation enables us to compute analytic derivatives that
capture the way in which changes to p affect the smoothness
and collision avoidance terms, and which are defined on the
motion trajectory generated by the low level.

We leverage the formulation derived in the previous section
to find optimal grasping configurations for the robot.

D. Beyond pick-and-place

So far we have described the method for single, independent
pick-and-place tasks. However, it is easily generalizable to
more complex tasks. The two types of tasks we highlight
in this paper are concurrent pick-and-place tasks, and object
handovers. Concurrent pick-and-place tasks for a dual-armed
robot requires each arm to perform the task without collisions.
Our system allows the user to specify the time step where
the pick task and the place task occur for each arm, and
will compute an optimal grasping and collision free motion
automatically. For object hand-over, we only require the two
arms to be able to grip the object at the same time, without
collisions. The poses of the object in space during hand-over
is completely determined by the optimization process.

V. RESULTS

We demonstrate the efficacy of our framework in several
scenarios. We refer the reader to the accompanying video for
further results. The algorithm, as well as robot communication,
was implemented in C++, and run on Windows 10 PC with
Intel Core i7-9700. We used a UR5 or a YuMi R© IRB 14000
with standard parallel grippers for simulation. To test with a
physical robot, we use a YuMi, with thin cushioning attached
to the grippers to avoid slippage, and blocks of dimensions
118 mm×23 mm×16 mm.

A. Interactive planning

In most scenarios the user is free to interactively modify
pick-and-place locations, change the timing, and introduce and
manipulate obstacles using a simple GUI. The optimization
process runs continuously, so the user can inspect intermediate
results in real-time. Once the convergence thresholds have
reached, the motions can be submitted to the robot to perform.
In Fig. 4 we show how the grippers react and continuously
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Fig. 5. Grasp optimized and unoptimized sequence for assembling a small pyramid of blocks. In both cases, the motion was optimized for low joint acceleration
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Fig. 6. Convergence plots showing the value of the top level objective per
iteration, for the pyramid and the handover tasks.

change the grasping pose to avoid an obstacle controlled by
the user. This and several more examples are shown in the
video. In Fig. 6 we show the value of the top level objective
and the progression of our solver per iteration, and the average
time per iteration for the pyramid and hand-over experiments
shown in Fig. 5 and 7 respectively. The graph show the typical
convergence behaviour exhibited by second order optimization
methods.

B. Smoothness and collisions

Fig. 5 and the video show the assembly of a small pyramid
of blocks. The top sequence shows the sequence without
grasp optimization, where the grip is predetermined to be
in the middle of each block. As can be seen in the video,
there is one collision that is unavoidable without changing
the timing. Furthermore, although the motions are optimized
for smoothness, without allowing the grasp to change, they
cannot be as smooth as the grasp optimized motion. This is
exemplified by the velocity graph in Fig. 5.

In Fig. 1 we show the assembly sequence of three side-by-
side trusses, each made of two blocks leaning against each
other. We note that such an assembly is only possible using
two arms. The sequence shows that while the first truss can
be assembled without any concerns, the second and third parts
must be gripped in such a way to avoid collisions. We refer
the reader to the video for the complete sequence.

(1) (2) (3) (4)

Fig. 7. Assembling a truss with a handover. (1) the blocks are positioned
next to the right arm. (2) the right arm passes one block to the left arm. (3)
it then picks up another block and (4) together they assemble a truss.

C. Handovers

Handovers are useful and sometimes necessary in many
different settings. We demonstrate one case in Fig. 7 where
the robot is tasked with making a truss, but one arm cannot
reach the stack of blocks. In this case, the other arm first
hands the block over to the first arm, and then they proceed to
assemble the truss. Note that the handover configuration was
not predetermined, but optimized using our system.

In the video we show another example where the task is to
flip a block bottom-up, but only one arm can reach it. That
arm cannot do it without colliding with the table. The only
solution is to pick up the block, hand it over to the other arm,
and grasp it in a different location. Then it can be placed back
at its original location without difficulty.

VI. DISCUSSION

A. Alternative: Constrained optimization

We argue above that the multilevel formulation is a conve-
nient way to describe grasp and motion planning problems.
While initially multilevel problems seem like complicated
constrained optimization problems, we show that they can
be easily transformed into unconstrained problems, which
are generally considered easier. Unconstrained optimization
algorithms are also simpler to develop and are less demanding
in term of optimality conditions. However, constrained opti-
mization is a viable approach for grasp and motion planning,
and we demonstrate it on a problem equivalent to (4), namely,

min
p,q0n,Q

Ograsp(p,q0n,Q)

s.t. ∇Opose(p,q0n,Q) = 0

∇Omotion(p,q0n,Q) = 0.



We can solve this problem using any constrained opti-
mization algorithm. The penalty method for example is
another method that converts the problem into an uncon-
strained problem, by squaring the constraints and adding
them to the objective. We show a convergence plot com-
paring our method to the penalty method in the inset.
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In both cases we plot the objective
plus the penalty terms. As shown,
the behaviour is similar, but in
our case, the penalty terms vanish
in one iteration, resulting in the
gap between the graphs. Another
formulation used e.g. in [21] is to
express p is a function of Q using forward kinematics.

B. limitations and future work

While our approach is rather flexible, we currently demon-
strated it only for the simple longitudinal grasp space. There
are other potential parameterizable grasp spaces for trivial
objects, such as spherical or cylindrical objects, but the ulti-
mate challenge would be to formulate a differentiable grasping
model of arbitrary objects. One approach we explore is the use
of an implicit representation of the object, e.g. a distance func-
tion, to derive a differentiable model. Similarly, our model only
supports parallel grippers, but a follow up work would be to
generalize it to other, more dexterous grippers, such as robotic
hands or soft grippers. The smooth optimization framework we
are employing can only find locally optimal motions. This is
a general limitation of gradient-based methods, which can be
alleviated using a sampling, multi-start strategy. In this paper,
thanks to the simplicity of the model, we did not experience
cases of clearly bad local minima. However, as the model
becomes more complicated when generalized to other grippers
and geometry, we expect bad local minima to become more
prevalent. In terms of assemblies, we only treated the grasp
and motion optimization part. However, a significant part of
the problem is sequencing. Sequencing in general has a more
discrete nature to it, which makes it challenging to integrate
into our differentiable formulation. Some research avenues
would be to attempt to solve a mixed-integer optimization
problem, or to integrate the task and motion optimization
problem into our framework, similar to the attempt in [22].
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