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Abstract— We combine Boston Dynamics Spot R© with a light-
weight, external robot arm to perform dynamic grasping
maneuvers. While Spot is a reliable, robust and easy-to-control
mobile robot, these highly desirable qualities come with the
price that the control access granted to the user is restricted.
Consequently Spot’s behavior must largely be treated as a
black box, which causes difficulties when combined with a
moving payload such as a robotic arm. We overcome the arising
challenges by building a model of the combined platform, fitting
the corresponding model parameters using experimental data
and a straight-forward optimization framework. We use this
model to generate control commands for the physical platform
using trajectory optimization. We demonstrate that even with
a simple model, and control trajectories deployed in a feed-
forward manner, the combined platform is capable of executing
grasping tasks in a dynamic fashion. Furthermore, we show how
the platform can use the additional degrees of freedom of the
legs to extend the reachability of the arm.

I. INTRODUCTION

The field of robotics will soon enter a new era where
robots are no longer confined to production halls, but are
prevalent in our day to day lives. Highly publicized demon-
strations of companies such as Boston Dynamics paint a
picture of a future where robots also trot around in our
neighborhoods. Beside that, the academic community has
invested vast amounts of resources into developing mobile
platforms such as quadrupeds [1], [2], [3]. In contrast to their
wheeled counterparts, they can safely and robustly navigate
through not only flat, but also rough and challenging terrains
[4]. This extended locomotive versatility comes with the
price that these platforms are notoriously difficult to control
and stabilize. While academia has been making significant
contributions to an open-sourced quadruped ecosystem (e.g.
[5]), industry decisively competes in an effort to commercial-
ize new technologies as well. In particular, Boston Dynamics
has been pioneering legged robotic platforms for decades,
and recently made one of their platforms commercially
available: The Spot R© robot [6] is a mid-sized quadruped with
360◦ vision and integrated obstacle avoidance. Its primary
intended use is to perform autonomous inspection missions
of industrial plants, construction sites or other facilities that
pose a rather high level of danger to humans. Spot is
designed to be stable, robust and easy to operate, allowing
it to successfully navigate through diverse environments.
This ability arguably makes it to one of the most sophis-
ticated legged platforms currently available. However, being
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Fig. 1: Boston Dynamics Spot R© equipped with an external,
light-weight robotic arm and an under-actuated gripper. The
combined platform called Spova can use both arm and legs
to comfortably reach objects lying on the ground.

a commercial product, some of the technology built into
Spot remains a trade secret, and is inaccessible to the user.
Control commands, for example, are limited exclusively to
body pose and velocity, while commands to individual legs or
motors are impermissible. This design relieves the user from
the burden of motion optimization and provides a safeguard
from reckless operation. However, direct leg control is not
enabled, and consequently, users have no means of regulating
foot placement. In other words, the behavior of Spot must
largely be treated as a black box.
In this paper, we study Spot as an augmentable research plat-
form and discuss the impact of its restricted control access
on its capabilities. Since Boston Dynamics’ own proprietary
arm is not yet available, we equip Spot with an external,
separately controlled robotic arm and gripper (depicted in
Figure 1), and explore the challenges and abilities of such
a setup. We argue that combining public and proprietary
hardware is becoming highly valuable in the field of robotics
[7], [8]. To this end, we present a generic optimization-based
framework that first optimizes for model parameters based
on real-world measurements, and then uses these results to
generate optimal nominal control trajectories. We then apply
this methodology to our specific platform combination. Since
it is comprised of a Kinova R© arm mounted on Spot, we will
refer to it as Spova for convenience purposes.
The major challenge stems mainly from Spot’s nature of
operation: a highly reliable mobile robot, but with restricted
control access. We suggest a solution by formulating a simple



model of the dynamics of Spova, which we evaluate on
a large variety of real-world experiments. While reliably
grasping objects is arguably still challenging for statically
mounted robotic arms [9], we further increase the difficulty
of the problem by investigating how Spova can dynamically
pickup objects. By doing so, we are working towards the
goal of making mobile robots more efficient in performing
manipulation tasks. Furthermore, we demonstrate how the
arm can benefit from the additional degrees of freedom of
the legged body in order to expand its reach and perform
more flexible grasping motions. We show that even for a
simple model, fast and dynamic maneuvers can be achieved
while benefiting from short computation times.

II. RELATED WORK

The literature on legged, mobile manipulators is vast, and
we only mention a small selection of relevant work [10].
Particular examples are IIT’s HyQ robot combined with a
hydraulic manipulator [7] and ANYmal with a collaborative
arm [8], [11]. [7] proposed a stabilizing control procedure
that treats body disturbances caused by the arm by optimizing
for the ground reaction forces generated from the legs. [8]
presented an optimization-based framework for a torque-
controlled platform relying on an inverse dynamics model
while focusing on robustness against external forces. [11]
used a similar hardware setup, and presented a method to
explicitly incorporate a metric for robustness into the motion
planning process. Another related physical platform is the
CENTAURO [12]. [13] uses this centaur-like humanoid robot
to push heavy objects with the help of its environment. Other
approaches considered cases where robots use their legs
to perform manipulation tasks, either with an additionally
attached gripper [14], or by using their feet [15], [16].
As common for a legged robots [17], we model Spova as
an arm on a free-floating base. However, in stark contrast
to previous work, we cannot rely on a faithful dynamical
model based on forces and torques due to the nature of
the restricted control access of Spot. Consequently, we use
kinematics to formulate a simple, empirical model. To ensure
that this model predicts reality well, we execute a parameter
identification procedure. We refer the interested reader to
[18], [19] for an overview of different methodologies in this
area. Our approach is closely related to [20], which computed
material parameters by minimizing the difference between
measured and simulated data in a least-squares sense.
An alternative avenue to build black box models for real-
world robotic systems control are learning-based approaches
[21], [22], [23], [24]. While these techniques typically gener-
alize better and can be applied to a wider range of scenarios,
they often require large data sets and extended training
sessions. In contrast, our simple optimization-based approach
benefits from short computation times, which allows for
fast prototyping of different empirical models. Overall, we
see our core contribution in the demonstration that even
with the use of a simple model and well-known, straight-
forward techniques, a variety of dynamic maneuvers can be
successfully executed on the combined hardware platform.

Fig. 2: Hardware setup of Spova: Spot R© is carrying
the Kinova R© arm, which is equipped with the SAKE
EZGripperTM. All communications to an external computer
are currently enabled by cables.

III. SETUP

A. Hardware

Boston Dynamics showcased Spot with its own cus-
tomized robotic arm [25] several years ago, but it is not com-
mercially available as of yet. Spot can carry payloads of up
to 14 kg, which limits the range of arms that can be mounted
on it. In this work, we employ the Kinova R© Gen3 [26] with
7 degrees of freedom and integrated vision module as our
manipulator. With a weight of 8.2 kg, maximum payload of
4.0 kg, and a reach of 902 mm, it is an adequate off-the-
shelf option for Spot to carry. We mount Kinova on Spot
using a custom-made metal box, fabricated from standard
aluminium angle profiles and plates, which can be screwed
onto Spot’s mounting rails (see Fig. 2). As for the gripper,
we choose the underactuated EZGripperTM Gen2 from SAKE
Robotics [27]. The mounting box is spacious enough for the
power supply of both arm and gripper. In our current setup,
cables are used for both communication and power supply,
meaning that both Spot and the arm receive commands from
an external computer via Ethernet, while the gripper currently
receives commands via USB. Our future plans include setting
up a cable-free configuration, since all platforms are in fact
capable of Wifi communication, and arm as well as gripper
can be powered using batteries. Nevertheless, our method is
agnostic to the mode of communication.

B. Communication Interface

We send control commands to the hardware using an
external PC that runs our framework written in C++. Boston
Dynamics provides a Python API to communicate with
Spot [28], which we interface with using pybind11 [29].
This API allows reading the current state of the robot
including its body pose, which is computed internally using
information from its onboard sensors, and can be expressed
relative to a coordinate system determined during boot up.
While commands can only be directed to the body, the API
allows to select predefined gait patterns. Out of the possible
gaits, the trot was observed to be the most appropriate,
since it results in fast, agile and stable motions. Depending
on whether the robot stands or walks, the body reacts to



commands in a slightly different manner. In stand mode,
the full body pose can be set, subject to predefined ranges
based on the physical limitations. The individual angles are
shown in the inset image, taken from the Spot User Guide.

In walk mode, the roll and yaw angles
are more restricted, but the behaviour
of pitch and body height remain similar
to stand mode. Position or velocity
commands can additionally be sent to
trigger motion, where the command
reference frame can be specified by
the user. Our experiments showed that
sending velocity commands in body

frame (i.e. forward, sideways and rotational velocity) exhibit
the best performance in terms of smoothness and flexibility.
The API also allows to configure a payload, i.e. a load with
a predefined mass, center of mass and moment of inertia.
This information is used by the robot’s internal locomotion
controllers. Currently, and to the best of our knowledge, it is
only possible to configure a static payload; changing payload
information during operation in not permissible according to
Boston Dynamics [30]. This is the main challenge to address
when Spot is carrying an external moving arm as a payload,
which we discuss in Sec. IV.
To communicate with the Kinova arm, we use the KortexTM

API in C++ [31] provided by the manufacturer. It allows
sending velocity commands for the individual joints, and read
the current joint angles from the robot. The SAKE EZGrip-
per uses a Dynamixel motor manufactured by ROBOTIS,
enabling the use of the Dynamixel SDK in C++ [32] to set
gripper finger positions and gripping force.
In our framework, the communication to each of these
platforms runs on an independent thread. To accurately track
the targets set by our motion planner presented in section IV,
and avoid drift and offsets resulting from sending velocity
commands, we use PID control [33] within each of these
control loops. To do so, we leverage the onboard pose
estimation provided by each of the hardware platforms.

IV. METHODS

A. Methodology

Our approach is to emulate the platform’s behaviour
using a simplistic, parameterized dynamics model, which
we discuss in Sec. IV-B. As such, our main goal boils
down to the generation of optimal control trajectories for
this system. In contrast to the aforementioned previous
work, we cannot rely on a finely tuned model, but as we
demonstrate, our simple model performs sufficiently well
after a parameter identification process. We formulate this
procedure as follows: Let x and u represent the entire time-
discretized state and control trajectories, and let p denote a
set of model parameters. We can express x as a function of
an initial state x0, u and p, that is x = x(u,x0,p). We wish
to identify p based on measurements. To this end, we run
several simulations with different control inputs and initial
states, denoted by ūj , x̄j

0. We compare these simulations
to the real, measured states x̂j = x̂(ūj , x̄j

0) obtained by

applying the same control sequences on the real system
starting from the same initial conditions. The ideal p would
minimize the difference between simulation and reality. We
pose this as an optimization problem, searching for p that
minimizes

p∗ = arg min
p

nd∑
j=1

∥∥∥x(ūj , x̄j
0,p)− x̂j

∥∥∥2 (1)

for nd experiments. Using p∗, we can then solve the trajec-
tory optimization problem

min
u
O(x(u,x0,p

∗)), (2)

where we optimize for the control sequence u with respect
to a certain objective O, which we discuss in Sec. IV-C.

B. Model

Since we can only send body commands to Spot, we
choose to model Spova as a kinematic arm with floating base.
Therefore, the state is represented by the stacked position and
orientation of the body and the arm’s joint angles, denoted by
qk for the kth degree of freedom. Consequently, the state xi

at time step i is parameterized by xi = (q1i , . . . , q
nq+6
i ) ∈

Rnq+6, where nq = 7 is the number of the arm’s joints.
We express the body orientation in Euler Angles, and note
that we do not run into Gimbal lock issues as long as we
choose the Euler axes such that the lock configuration is
not within the body constraints imposed by Spot’s physical
limits. The control input ui at time step i represents the
velocity commands that we send to the individual platforms.
Given these components, we can formulate a basic dynamical
system

xi+1 = xi + h · ui, (3)

where h is the step size. While this simple model appears to
well-approximate the behavior of the body and the arm when
they are operated independently, it fails when combined
together, due to the additional forces that the arm applies
to the body. Spot’s API does allow configuring customized
payloads, and in particular, it allows specifying details about
the mounting position, total mass, center of mass (CoM) and
moment of inertia (MoI) of the payload, which are likely
used in its internal controllers. However, Spot’s API does
currently not allow to change the payload’s configuration
during operation [30], and since we naturally wish the arm to
move, this poses a limitation. Without any payload updates,
Spot starts to drift when the arm is moved, causing it to
deviate from its planned route. This becomes especially
problematic when performing dynamic maneuvers with the
arm when the quadruped is in fast motion. We address this
problem with the following strategy: We attempt to correct
the model using an unknown correction term B. It aims to
reduce the discrepancy between the nominal state x̄nom, and
the actual one, as well as to express the interaction between
the body and the arm using the current and past positions of
the CoM of the arm. Specifically, we add B to the positional
part of (3), and therefore extend it to

xpos
i+1 = xpos

i + h · upos
i + B(xi,xi−1,xi−2), (4)



where the superscript pos is understood as taking only the
positional part of state (e.g. q1i , q

2
i , q

3
i ) and control. The past

states serve the purpose of approximating the velocity and
acceleration of the CoM by first order discretization. The
term B is defined as

B(xi,xi−1,xi−2) = pp(C(xi)− C(x̄nom))

+
pv
h

(C(xi)− C(xi−1))

+
pa
h2

(C(xi)− 2C(xi−1) + C(xi−2)),

(5)
where C(xj) is the CoM of the arm at state xj , To estimate
the CoM, we use nm = 13 point masses (see inset below).
Then,

C(xi) = T · 1∑nm

j=1 mj

nm∑
j=1

mjK(xi, lj), (6)

where mj are the masses, K is the forward
kinematics function, lj are the local coor-
dinates of the masses, and T transforms
the CoM into the body frame. Eq. (5)
contains three model parameters pp, pv
and pa, which weight the influence of the
CoM’s position, velocity and acceleration

on the body, respectively. The position is computed as an
offset from the nominal state x̄nom, which is also used to
configure a static payload using Spot’s API (configuration as
shown in the inset).

C. Trajectory Optimization

Following real-world measurements and parameter opti-
mization (1), we use the resulting model to generate optimal
control trajectories for Spova. We do so by optimizing the
complete trajectory at once

min
u

O(x(u,x0,p
∗)) (7a)

s.t. g(x(u,x0,p
∗)) ≤ 0, (7b)

h(x(u,x0,p
∗)) = 0 (7c)

using the objective O and inequality and equality constraints
g and h, respectively.
Equality Constraints are used to specify pick and place
targets. Given an object with a global pose z, we look for a
state xi at a predefined time i such that the object is reachable
by the gripper. This can be done via the IK constraint

K(xi, e)− z = 0, (8)

where e is the gripper pose in local coordinates. Equality
constraints are also used to specify the return to a predefined
state x̄i, i.e.

xi − x̄i = 0. (9)

Inequality Constraints are used to specify hardware limi-
tations, i.e. joint or body pose limits, as well as limits on
velocities and accelerations. We enforce these limits on each
degree of freedom q using box constraints qmin ≤ q ≤ qmax,
where qmin and qmax are the lower and upper bounds,

Fig. 3: Trajectory planning in simulation: Spova snatches
a ball off the ground while walking by. The framework
generates control inputs (in green) for an optimal state
target trajectory (in blue). Spova is shown at three different
instances. Note how the control trajectory of the body com-
pensates for the disturbance created by the arm’s movements
based on the optimized model.

respectively. Similarly, we model velocity and acceleration
limits by first order discretizations. Note that we need to
enforce these constraints for all time steps of the trajectory.
Inequality constraints are also used for
collision avoidance, i.e. to ensure that arm
and body do not collide with themselves,
each other, or the environment. To this
end, we approximate both body and arm
with collision primitives as depicted in
the inset, where we use a combination
of spheres and capsules. To avoid self-
collision, we add a constraint for each pair of collision
primitives of non-consecutive links in the kinematic chain.
We formulate such a constraint as

d(K(xi, c
j),K(xi, c

k)) ≥ rj + rk, (10)

where d(K(xi, c
j),K(xi, c

k)) denotes the shortest distance
function between two collision primitives j and k with radius
rj and rk, and local coordinates cj and ck, respectively.
Besides self-collision, it is important that Spova does not
collide with its environment. To this end, external obstacles
are approximated by the same collision primitives, and can
therefore be handled by adding more constraints in the
same manner. Equivalently, floor and walls are modelled as
individual planes and added to the constraint list as well.
Objective. The resulting nominal trajectory should be as
smooth as possible. This is achieved by minimizing the
acceleration of the root pose, as well as the individual joint
angles, which can be formulated with the objective

O(x) =
∑
‖xi − 2xi−1 + xi−2‖2. (11)

Solver. We solve both (1) and (7) using Newton’s method.
(1) is solved by computing the gradient using the chain rule

dO
dp

=
dx

dp

T ∂O
∂x

+
∂O
∂p

. (12)

To solve (7), we avoid computing the jacobian dx
du by

leveraging that the function x(u,x0,p
∗) is invertible with

respect to u. We do so by expressing all objectives and
constraints in terms of x, and solve the optimization problem
directly for x. Afterwards we compute the corresponding



Fig. 4: Spova is leveraging the additional degrees of freedom
of the body to dynamically pickup a toy without colliding
with the table. The two images show the same scene from
two different perspectives.

optimal u as a function of x by rearranging (4) for u. Since
Newton’s method does not take constraints explicitly into
account, we convert them into soft constraints using barrier
functions as presented in [34]. A graphical example of a
optimized trajectory in simulation is given in Figure 3.

V. RESULTS

We evaluate the efficacy of our method by running several
real-world experiments. To this end, Kinova’s integrated
vision module combined with standard vision techniques
is used to detect the position of individual objects. All
conducted experiments and demonstrations are shown in the
accompanying video.
Follow. Spova interactively follows a visual fiducial marker
wielded by the user, which is detected using Aruco Marker
Detection [35]. The video shows how Spova uses the degrees
of freedom of both the body and the arm to track the target
with the onboard camera. It simplifies the task of keeping the
marker within sight while not having to perform aggressive
maneuvers. This demonstration is implemented in a receding
horizon fashion: At each iteration of the high-level control
cycle, the trajectory is replanned for a short time horizon
based on Spova’s and the target’s current measured position.
Then, the first control action of this new trajectory is given to
the lower-level control cycles of the individual robots, where
PID controllers provide accurate tracking.
Reach. Spova is tasked with retrieving an object that is
placed under a table, making it difficult for the arm to
reach it without risking collisions. The motion planner comes
up with a solution that leverages the additional degrees of
freedom of the body, enabling Spova to safely snatch the
object off the ground and place it in the basket on the table.
To generate a collision-free motion plan, the shape of the
table is approximated by collision primitives as discussed in
section IV. Fig. 4 and the video illustrate the scenario from
two different view points.
Go Fetch is another experiment conducted, involving Spova
to independently and repeatedly retrieve an object from
previously unknown locations: First, the user places a ball
somewhere in the room. Spova executes a simple search

pattern to detect it with its camera using Circular Hough
Transform [36]. When spotted, it computes the ball’s position
in world coordinates using the camera intrinsics, and heads
out to retrieve it. After a successful grasp, it returns it to
the basket, which remains at a fixed, known location. After
returning to the initial configuration, the game starts again.
Fig. 5 showcases these different stages, and the video shows
several runs. The framework independently switches between
the different stages using a simple state machine, such that
the user does not have to intervene during the game. We note
that the deployed ball detection method can lead to inaccurate
position estimates when there is a large distance between ball
and camera. Instead of applying a more sophisticated detec-
tion method, we leverage the fact that the pose estimation’s
accuracy increases with decreasing distance to the target. We
do so by updating the motion plan based on the new detection
data while Spova is moving towards the ball. This is realized
by re-solving the same optimization problem that was used to
create the first command trajectory at each high-level control
iteration. In addition, we add a regularization objective that
matches Spova’s pose at the closest time step of the planned
trajectory with its current measured pose. It supports smooth
control commands generated by the new motion plan.

Fig. 5: User is playing ”Go Fetch” with Spova . First, a ball
is placed somewhere in the room (top left image). Spova
independently detects it (bottom left), picks it up (bottom
right), and returns it to the basket (top right).

Snatch. The goal of this experiment is to dynamically snatch
an object off the ground while walking by. Fig. 6 and the
video demonstrate how Spova executes this task. The exper-
iment is conducted several times in a row, where the object
is shifted along a straight line to create different scenarios,
testing the robustness and reliability of the presented method.
Spova first detects the object’s position on the line, plans its
path, and after execution returns to the initial configuration,
where it waits for the object to be placed again by the user.
We note that the timing of the different hardware components
is crucial to successfully grasp the object, especially for
the gripper. The gripper’s close command is implemented
as a discrete event, and therefore needs to be triggered
before the end-effector reaches its target. This means that
the command needs to be administrated at a slightly earlier
state of the trajectory. Since we plan the complete trajectory
beforehand, we can precompute the end-effector position
where the gripper needs to be activated by taking the closing



Fig. 6: Spova snatching the ball dynamically off the ground
while walking by. The images show the execution before
(top), during (middle) and after (bottom) the grasp.

velocity of its fingers into account. Using the pose estimation
of the two robots, the trigger is sent as soon as Spova is
sufficiently close to this precomputed position. The success
of this approach depends on the assumption that Spova can
track the trajectory accurately, but makes it more flexible
regarding time delay.

VI. DISCUSSION AND FUTURE WORK

We analyze the robustness and limitations of our setup
by running several tests on the Snatch experiment presented
in section V. The task for Spova is to repeatedly snatch a
ball off the ground from different positions on a straight line
while walking by. To find optimal model parameters, we use
nine different data sets, where we run the experiment from
the same initial condition for different time frames and ball
positions. We compute control trajectories with all model
parameters set to zero, apply it to the physical platform, and
collect the measured states from both hardware components
at each high-level control cycle. These data points are then
used to fit the model parameters in a least-squares manner
by solving (1). Using the resulting model to generate control
trajectories, we show in the accompanying video that the
experiment can be successfully repeated several times in a
row. Some quantitative performance measurements for these
experiments can be found in Table I. Fig. 7 illustrates that
the optimized model is crucial for a successful grasp of the
ball. The plots show the position of the body (upper plot) and
the gripper (lower plot) in world coordinates in the lateral
direction of Spova’s body. The body is supposed to track a
straight line, while the arm swings sideways to pick up the
ball while walking by. We first conduct the experiment with
all model parameters set to zero. In this case, the control
trajectory coincides with the target state trajectory (in blue).
When sending these commands to Spova, the body drifts
sideways due to the forces induced by the arm’s movements
(in red). The control trajectory (in green) generated from the
previously fitted model counteracts this behavior, leading to
a closer tracking of the target state trajectory (in pink). This
brings the gripper close enough to the ball such that Spova
can successfully grasp it.
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Fig. 7: Plots showing measurements from the Snatch exper-
iment. They depict data of the position of the body (upper)
and the gripper (lower) in world coordinates in the lateral
direction of Spova’s body. When sending the target state
(blue) as control commands to Spova, the body starts to
drift sideways due to the arm’s movements (red). The control
commands generated from the model (green) counteract this
behavior, which brings the gripper close enough to the ball
to successfully grasp it (pink).

TABLE I: Quantitative measurements conducted for the
Snatch experiment using an Intel Core i7-7709K 4.2Ghz PC.
They have been averaged over several different runs with
varying ball positions. N is the number of discrete steps.

Parameter fitting time (9 runs, in total 16796 data points) 0.9307s

Trajectory optimization time (N = 100) 0.7596s

Average body correction magnitude:
∑N

i=0
1
N
||Bi|| 0.1008m

Max body correction magnitude: maxi||Bi|| 0.1997m

Gripper tracking error:
∑N

i=0
1
N
||K(xi, e)−K(x̂i, e)||

with / without model fitting
0.0494m /
0.1062m

Success rate ball grasps 80%

In the video, we also show cases where Spova fails to grasp
the ball. These cases typically arise due to inaccurate ball
position estimation, or if Spova starts the trajectory execution
with some offset from the planned initial condition. Due to
the fact that we are currently deploying the high-level control
trajectory in an open-loop fashion, Spova is not able to make
up for these inaccuracies during the execution. A solution
would be to introduce an additional high-level feedback loop,
in particular in form of a model predictive control approach
[37]. We started to investigate this topic, and will continue to
do so in order to further increase the reliability and robust-
ness of the approach. Another reason why Spova sometimes
misses the ball is due to a more complex behavior of Spot’s
internal controller that are currently not captured by our
simple model. For example, Spot sometimes slows down due
to the disturbances created by the arm’s movements, causing
a delay that brings the individual components out of sync.
This behavior could be reflected by a more sophisticated
model. An alternative to our current approach would be to
generate more data through physical measurements and use it
to train a more comprehensive model using machine learning.
Nevertheless, with our current setup, Spova is able to grab
the ball successfully four out of five times.
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Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, June 2014.

[36] M. Rizon, Y. Haniza, S. Puteh, M. S. Ali Yeon, S. Abdul Rahman,
M. Sugisaka, Y. Sazali, M. M. Rozailan, and M. Karthigayan, “Object
detection using circular hough transform,” 2005, accepted: 2011-03-
22T02:32:25Z Publisher: Science Publications.

[37] V. Adetola and M. Guay, “Robust adaptive MPC for constrained un-
certain nonlinear systems,” International Journal of Adaptive Control
and Signal Processing, vol. 25, no. 2, pp. 155–167, 2011.

https://www.bostondynamics.com/spot
https://www.bostondynamics.com/spot
http://failtograsp.github.io
https://www.centauro-project.eu
https://www.centauro-project.eu
https://www.youtube.com/watch?v=fUyU3lKzoio&feature=youtu.be
https://www.kinovarobotics.com/en/products/gen3-robot
https://www.kinovarobotics.com/en/products/gen3-robot
https://sakerobotics.com/
https://sakerobotics.com/
https://github.com/boston-dynamics/spot-sdk
https://github.com/boston-dynamics/spot-sdk
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://github.com/Kinovarobotics/kortex
https://github.com/Kinovarobotics/kortex
https://github.com/ROBOTIS-GIT/DynamixelSDK
https://arrow.tudublin.ie/engscheleart/86
https://arrow.tudublin.ie/engscheleart/86

	Introduction
	Related Work
	Setup
	Hardware
	Communication Interface

	Methods
	Methodology
	Model
	Trajectory Optimization

	Results
	Discussion and Future Work
	References

